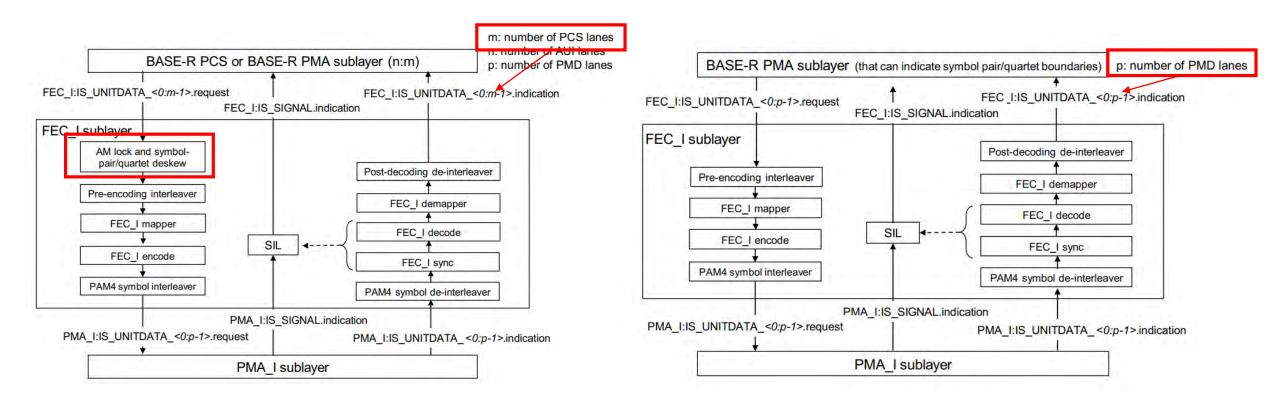
FEC_I Sublayer Architecture Proposal for Type 2 PHYs

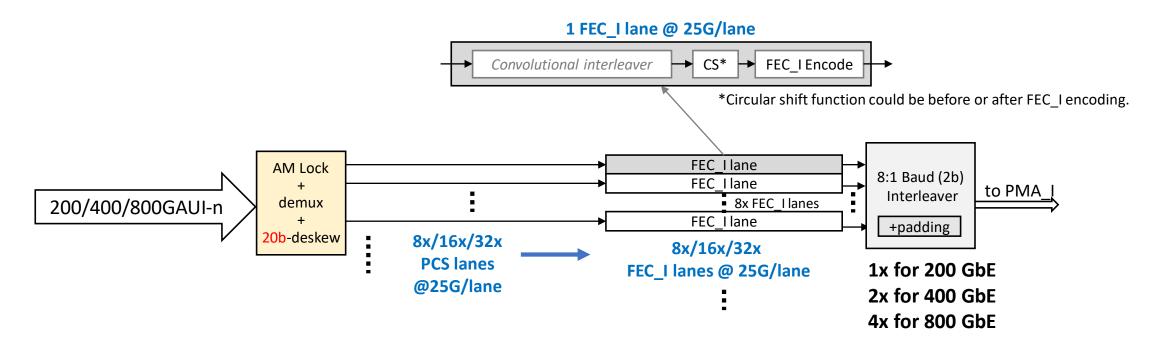
Xiang He, Hao Ren Huawei Technologies

Contributors


- Kechao Huang, Huawei
- Xiaoling Yang, Huawei

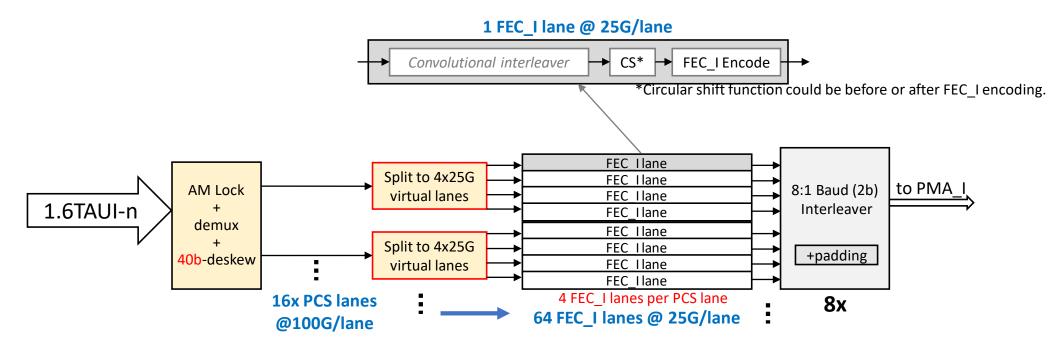
Introduction

- Type 2 PHY/FEC scheme has been adopted with Hamming(128,120) as the inner FEC.
 - See parthasarathy 3dj 02a 2303, and motions 3dfdj 2303.
 - Detailed design regarding convolutional interleaver and FEC lane rates are TBD.
- Symbol-pair muxing has been adopted for 200G/lane AUIs.
 - See <u>ran_3dj_01a_2303</u>, and <u>motions_3dfdj_2303</u>.
- Convolutional interleaver has been proposed to randomize errors from inner FEC.
 - See patra 3dj 01b 2303.pdf, huang 3df 01a 2211 and he 3dj 01a 230206.pdf.
 - Three different lane rates were proposed: 25G/lane, 100G/lane and 200G/lane.
 - The convolutional interleaver should be avoided for shorter PMDs due to high latency.
 - See <u>he 3dj 02a 230206</u>, <u>dawe 3dj 01a 2303</u>.
 - Latency impact has been analyzed in <u>brown 3dj optx 01b 230413</u> and <u>brown 3dj elec 01 230420</u>.
- This presentation focuses on FEC_I lane rates, and recommend to use 200G/lane design.
 - Convolutional interleaver in the following slides could be excluded if not needed.


Architecture Overview

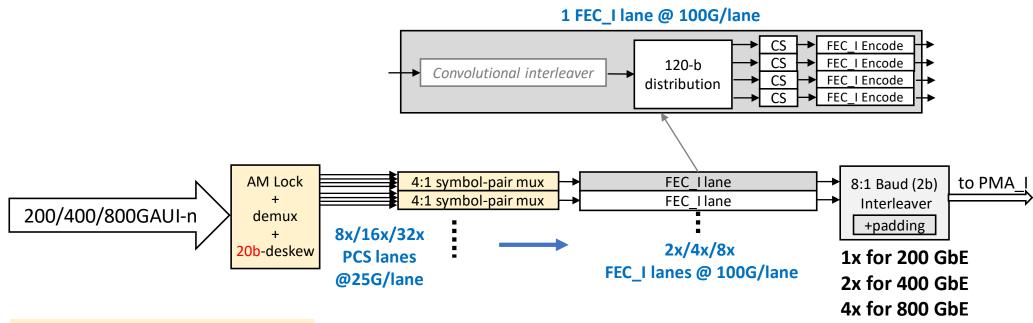
- The three FEC lane designs can be viewed as two main options, one has PCS lane based design, and the other has PMA/PMD lane based design.
 - Both options have exactly the same performance in terms of FEC gain.
 - Both options have the same number of bits storage for convolutional interleaver if used.

25G/lane Design — 200 GbE, 400 GbE and 800 GbE


- Data from AUI is de-muxed to PCS lanes first, and deskewed to RS symbol-pair (20b) boundary.
- FEC_I sublayer is based on 100G/lane.
 - For 200/400/800 GbE, PCS lane rate is 25G/lane, and each has its own FEC_I lane.
- 8-lane per 200G PMD lane naturally supports 8:1 channel interleaver.

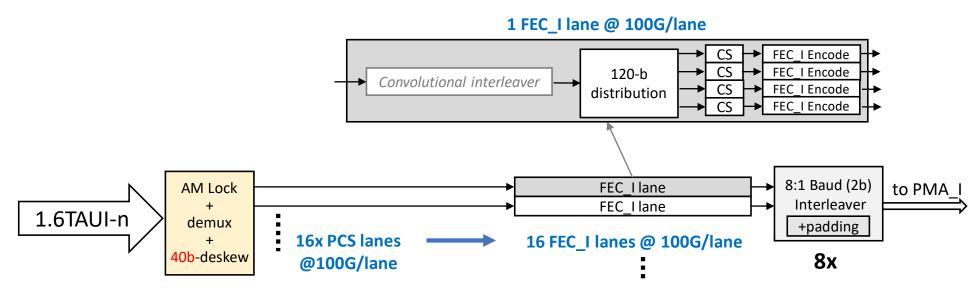
^{*}Highlighted boxes are rate-specific functions.

25G/lane Design — 1.6 TbE


- Data from AUI is de-muxed to PCS lanes first, and deskewed to RS symbol-quartet (40b) boundary.
- FEC_I sublayer is based on 100G/lane.
 - For 1.6 TbE, each PCS lane rate is 100G, and each needs to be split into 4x25G "virtual" lanes.
 - 4x25G virtual lanes need to be recombined back to a PCS lane on Rx side.

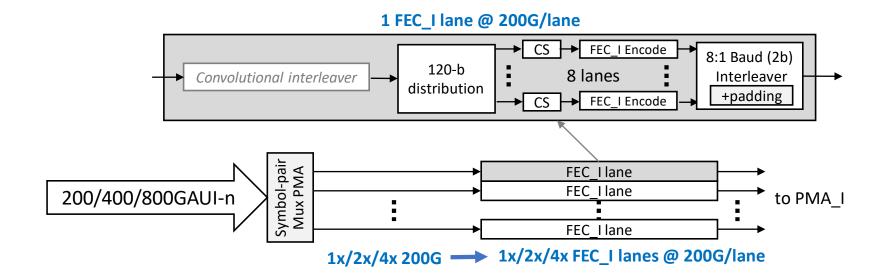
^{*}Highlighted boxes are rate-specific functions.

100G/lane Design — 200 GbE, 400 GbE and 800 GbE


- Data from AUI is de-muxed to PCS lanes first, and deskewed to RS symbol-pair (20b) boundary.
- FEC_I sublayer is based on 100G/lane.
 - For 200/400/800 GbE, a 4:1 symbol-pair mux is needed for each FEC_I lane.
- 100G/lane design could also support 8:1 (or higher ratio) post-encoding Baud interleaver.
 - Circular shift function could be before or after FEC_I encoding.

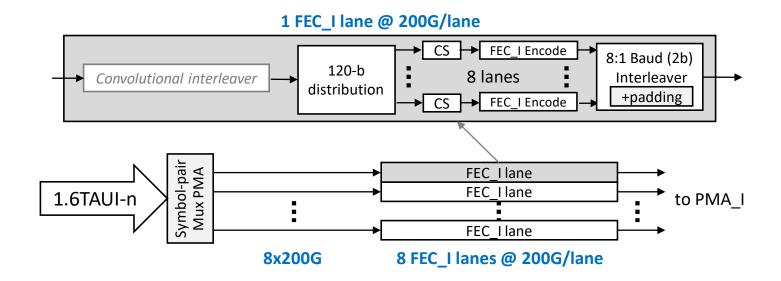
^{*}Highlighted boxes are rate-specific functions.

100G/lane Design — 1.6 TbE


- Data from AUI is de-muxed to PCS lanes first, and deskewed to RS symbol-quartet (40b) boundary.
- FEC_I sublayer is based on 100G/lane.
 - For 1.6 TbE, each FEC_I lane takes the 100G/lane PCS input directly.
- 100G/lane design could also support 8:1 (or higher ratio) post-encoding Baud interleaver.
 - Circular shift function could be before or after FEC_I encoding.
 - patra_3di_optx_01_230427 defined single lane CS+FEC_I encode, but functionally is the same as shown below.

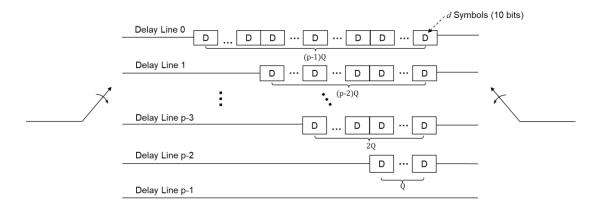
^{*}Highlighted boxes are rate-specific functions.

200G/lane Design — 200 GbE, 400 GbE and 800 GbE


- Data from AUI is NOT required to be de-muxed to PCS lanes first.
 - Relying on the symbol-pair muxing PMA functions to establish FEC_I lane mapping.
- Maximizing the common functional blocks across different rates.
- 200G/lane design could also support 8:1 (or higher ratio) post-encoding Baud interleaver.
 - Circular shift function could be before or after FEC_I encoding.

^{*}No rate-specific functions.

200G/lane Design — 1.6 TbE


- Data from AUI is NOT required to be de-muxed to PCS lanes first.
 - Relying on the symbol-pair muxing PMA functions to establish FEC_I lane mapping.
- Maximizing the common functional blocks across different rates.
- 200G/lane design could also support 8:1 (or higher ratio) post-encoding Baud interleaver.
 - Circular shift function could be before or after FEC_I encoding.

^{*}No rate-specific functions.

200G/lane Convolutional Interleaver Design

- 200G/lane FEC_I design could utilize the same design blocks across different rates.
- 200G/lane convolutional interleaver design has lower latency for most cases.
- For latency sensitive applications, convolutional interleavers should not be used.

Proposal	PCS	d (RS symbol)	Р	Q	Depth	Latency ns	FEC_I Lane Rate
patra_3dj_optx_01_230427	1.6TE	4	3	11	12x RS	24.85	100G/lane
	800GE	4	3	6	12x RS	54.21	25G/lane
	400GE	4	3	6	6x RS	54.21	
		2	6	6	12x RS	135.53	
	200GE	4	3	11	6x RS	99.39	
		2	6	12	12x RS	271.06	
he_3dj_optx_01_230427	1.6TE	4	3	23	12x RS	25.98	200G/lane
	800GE	4	3	45	12x RS	50.82	
	400GE	4	3	45	6x RS	50.82	
		2	6	46	12x RS	129.88	
	200GE	4	3	91	6x RS	102.78	
		2	6	91	12x RS	256.94	

Summary

- The FEC_I lane rate does not affect the FEC performance.
 - However it needs to be defined clearly to ensure interop.
- FEC_I sublayer designing based on 200G/lane PMA lanes enables unified design across all rates that supports 200G/lane optical PMDs.
 - With a single FEC_I sublayer defined, it could be used to define all Ethernet rates using 200G/lane optics.

Thank you!