224 Gbps-PAM4 CR Link Simulation and Analysis with a 1 Meter DAC Channel: Design B

Mike Li, Jenny Jiang, Yi Heng Khor, Hsinho Wu, Masashi Shimanouchi, Ilia Radashkevich, Itamar Levin, Ariel Cohen, Ajay Balankutty (Intel) Megha Shanbhag, Nathan Tracy (TE)

May 15, 2023
Background and Introduction (I)

• An important use case of 224 Gbps-PAM4 is the cable reach (CR) with a 1 Meter DAC.

• We have created a CR channel to support 1 Meter DAC (oif2023.183.00, li_3dj_09_2305).
Background and Introduction (II)

- We leveraged our established/validated CR/LR simulation/modeling tool-flow-methodology (TFM) (e.g., oif2022.067.00), updated reference package (oif2023.172.00, li_3dj_02_2305), and reference TX, RX to provide link simulation and analysis with this newly created CR/LR channel Design B.
Preliminary 224Gbps PAM4 CR End-to-End COM Analysis

• Proposed CR/LR End-to-End COM configuration
 – DER: 10^{-4}
 – Reference TX
 • Output amplitude ($A_v/A_{fe}/A_{ne}$): 0.413/0.413/0.608
 • RLM = 0.95, $SNR_{Tx}=33$dB, $A_{DD} = 0.02U_{pk}$, $RJ = 0.01U_{RMS}$
 • 20%-80% Rise/Fall Time (T_r): 4ps
 • TX FIR: 4-pre-, 1-post taps
 • TX Die: No change (see oif2022.065.02, mli_3df_01a_220316.pdf)
 • Termination impedance (R_d): 46.25 ohms
 • TX Package:
 – $Z_p = 33$mm, $Z_{p2} = 1.8$mm
 – $\gamma_0 \text{ and } a_2 \text{ are updated} \text{ (see oif2023.172.00, li_3dj_02_2305)}$

– Reference Receiver
 • RX Die: Same as TX die
 • Termination impedance (R_d): 46.25 ohms
 • RX Package:
 – Same as TX, $Z_p = 31$mm
 • Noise Filter BW (f_r) = 0.5 * fb
 • RX EQ
 – CTLE: 2x Scaled from 802.3ck
 – RX FFE: Fixed: 6 pre- + 24 post-taps
 – Floating Taps: 4 groups of 5 consecutive floating taps up to 60 UI
 – RX MLSD: 1 tap, $b_{max} = 0.85$
 • η_0: 5×10^{-9} V²/GHz
Table 93A

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Units</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_b</td>
<td>112</td>
<td>GBd</td>
<td>Parameter setting information</td>
</tr>
<tr>
<td>f_{\min}</td>
<td>0.05</td>
<td>GHz</td>
<td>Parameter setting information</td>
</tr>
<tr>
<td>Δ_f</td>
<td>0.01</td>
<td>GHz</td>
<td>Parameter setting information</td>
</tr>
</tbody>
</table>

Table 92

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Units</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_p</td>
<td>TX RX</td>
<td>12 33; 1.8 1.8</td>
<td>Parameter setting information</td>
</tr>
<tr>
<td>$z_{p</td>
<td>tx}$</td>
<td>TX RX</td>
<td>110.3</td>
</tr>
<tr>
<td>$z_{p</td>
<td>rx}$</td>
<td>TX RX</td>
<td>110.3</td>
</tr>
<tr>
<td>$z_{p</td>
<td>tx}$</td>
<td>TX RX</td>
<td>110.3</td>
</tr>
</tbody>
</table>

Notes:
- Changes are marked in yellow.
- COM v4.0 was used in this study.
Preliminary 224Gbps PAM4 CR end-to-end COM Analysis

Case 1

- 2x FEXT + 1 x NEXT
- FFE Taps = (6+M+24) + 4x5
- COM = 3.34 dB
- DER = 1e-4

CH22
Summary

• This 40 dB (bump-to-bump) CR channel (Design A) can be supported with a COM 3.34 dB, at a DER of 1e-4, with the newly developed ref TX, RX, and PKG.

• The newly developed ref TX, RX have the following key characteristics/capabilities:
 – TX FIR: 4-pre-, 1-post taps
 – RX FFE fixed: 6 pre- + 24 post-taps
 – RX FEE floating: 4 groups of 5 consecutive floating taps up to 60 UI
 – RX MLSD: 1 tap, bmax = 0.85