Logic baseline proposal for 800GBASE-LR1

Eric Maniloff, Ian Betty, Sebastien Gareau, James Harley -- Ciena

Bo Zhang, Kishore Kota, Lenin Patra -- Marvell

IEEE P802.3dj Interim

May, 2023 - San Antonio

Supporters

Chongjin Xie - Alibaba Tony Chan Carusone - Alphawave Or Vidal – Alphawave Mike Wingrove - Ciena Hideki Isono - Fujitsu Optical Components Ali Ghiasi - Ghiasi Quantum Cedric Lam - Google Xiang Zhou - Google Xiang Liu - Huawei Kechao Huang - Huawei Peter Stassar – Huawei Piers Dawe - Nvidia

Di Zhang - Kuaishou Ernest Muhigana — Lumentum Madhu Krishnaswamy - Lumentum Arash Farhoodfar - Marvell Samuel Liu, Marvell Pranay Aiya, Marvell Zhigang Gong - O Net Gurinder Parhar - Source Photonics Frank Chang - Source Photonics

Overview

- This contribution provides a logic baseline for 800GBASE-LR1 based on a BCH inner code
 - This approach provides a power and latency optimized solution for the 802.3dj 800G 10km single wavelength objective
- The building blocks are presented, to allow a logical baseline to be adopted
- Previously, optical budgets have been presented for 800GBASE-LR1 based on this FEC scheme
 - https://www.ieee802.org/3/dj/public/23_03/maniloff_3dj_01a_2303.pdf
- The approach defined is compatible with the current OIF 800LR IA, in order to allow re-use of the logical architecture
 - Details follow oif2022.340.02 "800LR Baseline Proposal Update" and oif2022.341.00 "800LR Proposal updates and discussion"

Data Path Detail

- https://www.ieee802.org/3/dj/public/adhoc/optics/0223_OPTX/brown_3dj_optx_adhoc_01a_230222.pdf
- Either Type 2 or Type 3 can be supported
- Focus of this contribution is on Type 2

800LR FEC Adaptation

Synchronous data path maintains Ethernet ± 50 ppm timing

Lane Permutation

- Purpose: Provides 10bit symbols from 4 interleaved RS(544,514) codewords on each lane
- Prerequisites: 10bit symbol alignment across lanes. Lane reorder and FEC codeword deskew across lanes is optional
- Operates on 4 RS-symbol boundaries across 32 PCS lanes

		0	1	2	3		0	1	2	3
Lane	0				24					
Lane	1	0	8	16			\cap	8	20	28
Lane	2						1 2			
Lane	3									
Lane	4	1 5 1	9	17	25			9	21	29
Lane	5									
Lane	6									
Lane	7									
Lane	8		10	18	26			10	22	30
Lane	9	2								
Lane	10	.0 Z .1								
Lane	11									
Lane	12	3	11	19	27			11	23	3:
Lane	13						3 11			
Lane	14							T T		
Lane	15									
Lane	16	Л	12	20	28	, i i i i i i i i i i i i i i i i i i i		12	16	24
Lane	17						4 1 5 1 6 1 7 1			
Lane	18	4								
Lane	19	9								
Lane	20)	13	21	29			13	17	25
Lane	21	5								
Lane	22	J								
Lane	23	3								
Lane	24	ŀ	14	22	30			14	18	8 26
Lane	25	6								
Lane	26	0						Τ4		
Lane	27									
Lane	28		15	23	31					2
Lane	29	7						15	10	
Lane	30	/					/	тЭ	19	2
Lane	31									

FEC Lane Convolutional Interleaver

- Purpose: Ensure each BCH codeword contributes no more than one 10-bit RS symbol to each RS codeword.
- One Convolutional Interleaver per PCS lane.
- Interleaver has three parallel delay lines
- D represents storage of 40b
- Word width is 4 symbols or 40 bits at I/O

Interleaver Latency of 55 nanoseconds

BCH Encoder

- Purpose: Inner code works in conjunction with outer KP4 FEC to provide a highperformance FEC for 800LR
- BCH (126,110) code operates on 11 RS symbols at output of convolutional interleaver
- Simple Chase decoders can achieve a pre-FEC BER threshold of ~1.1e-2 for a post-KP4 BER of 1e-15
- Code definition:

• Define c as a binary vector of length 126, and c(x) a polynomial of degree 125 with the coefficients defined by c (where the bit 0 of c represents the coefficient of power 125).

• Then c is a codeword of the BCH(126,110) code if c(x) is divisible by the binary polynomial

$$g(x) = x^{16} + x^{14} + x^{11} + x^{10} + x^9 + x^7 + x^5 + x^3 + x + 1$$

Additional details in oif2022.341.00, "800LR Proposal updates and discussion"

Symbol Mapping and Polarization Distribution

- The RS symbols encoded by each BCH encoder are shuffled to improve burst tolerance
- 4 contiguous lanes are mapped to XI/XQ/YI/YQ of 63 DP-QAM16 symbols (shown as red box in the accompanying figure)
- Mapping ensures bits from each BCH codeword are distributed among polarization and constellation points

Mapping to DP-QAM16 symbols

- Suppose bits of BCH encoder output for time k and lane p (for $p = 0, 1, \dots 31$) are denoted: $\begin{pmatrix} b_0^{k,p}, b_1^{k,p}, \dots, b_{109}^{k,p}, c_0^{k,p}, c_1^{k,p}, \dots, c_{15}^{k,p} \end{pmatrix}$ where the information bits are denoted $b_0^{k,p}, b_1^{k,p}, \dots, b_{109}^{k,p}$ and the check/parity bits are denoted $c_0^{k,p}, c_1^{k,p}, \dots, c_{15}^{k,p}$
- Bit shuffling: Information bit q of lane p is rotated to position (q + 20 * p)%110 prior to mapping
- Mapping: Suppose $S_l^k = (s_{XI}^{k,l}, s_{XQ}^{k,l}, s_{YQ}^{k,l})$ denote the DP-QAM16 symbols (prior to pilot insertion) for $l = 0, 1, \dots, 503$

•
$$s_{XI}^{k,l}$$
 is formed from bits $[2 * l\%63 + l\%2, 2 * l\%63 + (l+1)\%2]$ of lane $4 * \left[\frac{l}{63}\right] + (2l + \left[\frac{l}{2}\right]\%2)\%4$
• $s_{XQ}^{k,l}$ is formed from bits $[2 * l\%63, +l\%2, 2 * l\%63 + (l+1)\%2]$ of lane $4 * \left[\frac{l}{63}\right] + (2l + \left[\frac{l}{2}\right]\%2 + 1)\%4$
• $s_{XI}^{k,l}$ is formed from bits $[2 * l\%63 + l\%2, 2 * l\%63 + (l+1)\%2]$ of lane $4 * \left[\frac{l}{63}\right] + (2l + \left[\frac{l}{2}\right]\%2 + 2)\%4$
• $s_{YQ}^{k,l}$ is formed from bits $[2 * l\%63, +l\%2, 2 * l\%63 + (l+1)\%2]$ of lane $4 * \left[\frac{l}{63}\right] + (2l + \left[\frac{l}{2}\right]\%2 + 2)\%4$

800LR DSP Frame

- Pilots are included in 1 of 64 symbols (one pilot symbol, 63 payload symbols.)
 - 63 payload symbols is an easy multiple for BCH(126,110), no RES (padding) needed
- DSP Frame is 96*64= 6144 symbols including 96 pilots.
- The pilot sequence is a PRBS9 pattern initialized at the beginning of the DSP Frame.
 - Seed value for pilot reset is chosen to ensure DC balance.
- Each DSP Frame is aligned to 32 (126,110) BCH codewords and aligned to the 32 FEC lanes.
- This simplified frame relative to 800ZR, reduces latency by allowing clock domain crossings to be avoided through bus width adjustments.

Reset Pilot Sequence

Pilot Sequence

- Pilot symbols are implemented on the outer symbols of the dual pol 16QAM constellation, allowing robust framing to a DP QPSK constellation
- The pilot sequence is a fixed 96 symbol sequence from a PRBS9

Timing Overview

Summary

- A baseline proposal for the 800GBASE-LR1 logical implementation is presented
- This baseline provides a low power and latency solution for an optimized coherent interface for 800GBASE-LR1
- This logical approach can also be applied to 800GBASE-ER1

Thanks!