Updates on Baseline Proposal for 800G-FR4 Objective

Guangcan Mi, Yu Tian, Ruoxu Wang Huawei Technologies Co. Ltd

Introduction

- In November 2022, we proposed a set of power budget and baseline specifications for 200G/lane optical PMDs below 2km in <u>mi_3df_01a_2211</u>. Since then
 - > Demonstration on 200G/lane PAM4 transmission reported in OFC and journals
 - > Basic structure of FEC chosen, with details left open for discussion . Motion 5 of March Plenary in 2023
 - > Bypass of some of the FEC features under discussion \rightarrow bigger impact on the PSM objectives <u>brown_3dj_optx_01b_230413</u>
 - > Influence of AUI BER rate to optical PMD BER threshold was discussed he 3dj optx 01a 230413
 - > Need of a stronger Reference receiver discussed rodes 3dj optx 01 230413 and mi 3dj optx 01 230427

• This contribution updates the power budget and baseline proposal for 800G-FR4 optical PMD.

Considerations on DGD penalty

The DGD_max is calculated based on $DGD_max = PMD_max * sqrt(Lkm) * S$

	PMD_Q	PMD_max	S	L(km)	DGD_max (ps)	
100GBASE-FR 400GBASE-FR4	0.2	0.43	3.75	2	2.3	•
800G-DR4	0.2	0.45	3.75	0.5	1.14	
800G-DR4-2 800G FR4	0.2	0.43	3.75	2	2.28→ 2.3ps	

Previous analysis regarding DGD penalty in 802.3df/dj

zhang 3df 01b 2207

- In our 2022 November contribution, we suggested 0.4dB allocation for DGD penalty
- There is potential to save some from this allocation
 - If Stronger Rx equalization be used/adopted
 - Progress on 200G/lane Tx with 55GHz+ BW performance, e.g. OFC2023 M2D.3, ECOC2022 Th1E.4.
- Relies on more experimental Data or simulation based on actual device performances

Reference Receiver and TDECQ

As discussed in Mi_3dj_01_230427, the need of a stronger reference receiver was discussed

- x taps of FFE + advanced algorithm was suggested
- In this proposal Reference receiver left to be TBD
- Taking 11-tap FFE as a reference point to bound the TDECQ value from our simulation result.
- TDECQ_max set to 3.4dB

• Relatively ideal case, not considering impact of temperature, BW deterioration, jitter and etc.

Updated power budget of the optical link

	800G-FR4
power budget	7.9
channel IL	4
maxim discrete reflectance	-35
allocation for penalties	0.7
maxim positive dispersion	6.6
min negative dispersion	-11.7
DGD_max	2.28
optical return loss(min)	25
TDECQ_max	3.4 3.7

Updated Transmitter and Receiver Baseline

	800G-FR4		
De	Value	Unit	
Signaling Ra	113.4375 ±50ppm	GBd	
Modul	PAM4	-	
Lane Way	1264.5 to 1277.5 1284.5 to 1297.5 1304.5 to 1317.5 1324.5 to 1337.5	nm	
Average Launch	4.9	dBm	
Average Launch	-2.4	dBm	
Transmitter	3.7	dB	
	TDECQ<1.4dB	0.6	dBm
Transmitter OMA _{outer min}	1.4dB≤TDECQ≤3.4dB	-0.8+TDECQ	dBm
TDI	ECQ(max)	3.4	dB
	TECQ	Same as TDECQ	dB
TDE	CQ-TECQ	TBD	dB
Average launch power of	OFF transmitter, each lane(max)	-16	dBm
Extionct	ion Ratio (min)	3.5	dB
Transmitte	8	Ps	
over/und	TBD	%	
RI	-139	dB/Hz	
Optical Return	n loss tolerance(max)	17.1	dB
Transmitter	reflectance(max)	-26	dB

	800G-FR4				
D	Value	Unit			
Signaling R	113.4375 ±50ppm	GBd			
Modu	PAM4	-			
Lane Wa	1264.5 to 1277.5 1284.5 to 1297.5 1304.5 to 1317.5 1324.5 to 1337.5	nm			
Damage th	5.4	dB			
Average receive	4.9	dBm			
Average receive	-7.1	dBm			
Receiver	3.7	dB			
Difference in receive (OM	TBD	dB			
Receiver	reflectance(max)	-26	dB		
Pagiayar Sansitivity	TECQ<1.4dB	-4.1	dBm		
OMA _{outer} , each lane(max)	1.4dB≤TECQ≤3.4dB	-5.5+TECQ	dBm		
Stressed receiver sensiti	TBD	dBm			
Conditions of stresse	3.4	dB			

^a: x refers to the value of Optical return loss tolerance(max) of each column.

KP4 + Hamming(128,120) was assumed ; Reference receiver TBD

Considerations on RIN_OMA

Preliminary simulation assumed

- Component BW of 50GHz
- BER limit 2e-3
- FFE equalizer

RIN-OMA simulation @ ER=3.5, ADDA/TOSA/ROSA BW=50G

RIN_OMA has impact on both Receiver Sensitivity and the error floor.

We suggest to use -139dB/Hz RIN_OMA, considering

- It allows for two orders of magnitude protection of BER error floor from the BER limit
- It is achievable
 - Recent demonstrations on EML shown better performance than -139dB/Hz RIN_OMA
 - For laser + MZ modulator architecture, low RIN noise is achievable with high power DFB lasers.

Summary

- The power budget and baseline proposal for 800G-FR4 was updated
 - > Reconsidering DGD Penalty
 - > Update reference receiver consideration and TDECQ_max
 - > Tx and Rx specification were shown based on CWDM wavelength plan
- PSM objectives (800G-DR4 and 800G-DR4-2) were not discussed in this contribution
 - > Its major application in DC requires low latency
 - > Details of FEC has note worthy impact on latency
 - > Very low dispersion could potentially loosen the requirement on Rx equalization
 - > Final decision on FEC and reference receiver will largely change the specification of these objectives
- Measurements on true devices are needed to build the specs!
 - > CWDM was proposed to be the objective, but achievability with sufficiently low penalty will require reconfirmation by testing
 - > Possibility of saving some power budget out of allocated penalties
 - > TBDs in the Tx and Rx spec table

Thank you.

把数字世界带入每个人、每个家庭、 每个组织,构建万物互联的智能世界。

Bring digital to every person, home and organization for a fully connected, intelligent world.

Backup Slides

MPI penalty – 2km application

Random phase between refle	ctors, random	selection of mod	dulatio	n leve	ls										
Polarization assumed aligned				PAM-N									1		
				N=							ER	dER	1/1-dER	inner/or	uter OM/
Baseline BER	average phase=			4							3.5	0.447	1.8073	0.33	1
2.0E-03	3.106680048	6													
	PMD											PMD			
	R1	R 2	R 3	R 4	R 5	R 6	R7	R 8	R 9	R 10	R 11	R 12			
	Rpmd	RconF	RconG	RconG	RconH	RconK	RconK	RconH	RconG	RconG	RconF	Rpmd		N value	used to
Reflection level inputs->	-26	-35	-55	-55	-55	-55	-35	-35	-55	-55	-35	-26		4	
	phase between	phase between	phase b	phase b	phase b	phase betw	ephase bet	phase be	phase b	etween					
	int1-int2	int2-int3	int3-int4	int4-int5	int5-int6	int6-int7	int7-int8	int8-int9	int9-int1	(int10-in	int11-in	t12			

Random phase between refle	ctors, random	selection of mo	dulatio	n leve	ls										
Polarization assumed align	ed			PAM-N									1		
				N=							ER	dER	1/1-dER	inner/o	uter OMA
Baseline BER	average phase=			4							3.5	0.447	1.8073	0.33	1
4.9E-03	3.118309958														
	PMD											PMD			
	R 1	R 2	R 3	R 4	R 5	R 6	R7	R 8	R 9	R 10	R 11	R 12			
	Rpmd	RconF	RconG	RconG	RconH	RconK	RconK	RconH	RconG	RconG	RconF	Rpmd		N value	used to
Reflection level inputs->	-26	-35	-55	-55	-55	-55	-35	-35	-55	-55	-35	-26		4	
	phase between	phase between	phase b	phase b	phase b	phase betw	phase bet	hphase be	phase b	etween					
	int1-int2	int2-int3	int3-int4	int4-int5	int5-int6	int6-int7	int7-int8	int8-int9	int9-int1	(int10-in	int11-in	t12			

For 2km applications(DR-2 & FR) , MPI penalty 0.3dB

Revist the experimental result

- As stated in <u>kuschnerov_3df_01b_221012</u>, with FEC limit @4.85e-3, with a strengthened algorithm, FFE+MLSE for the data
 - ~8dBm OMA Rx sensitivity
 - Leaves about ~3dB room for a Rx sensitivity of 5dBm
- Same applies to assuming FEC limit @2e-3, with a strengthened Rx algorithm, FFE+MLSE for the data
 - ~-7.3dBm OMA
 - Leaves about >3dB room for Rx Sensitivity of 4dBm
- The performance can still be improved as the 200G/lane technology evolves
 - Current data areacquired with bandwidth-limited components
 - Room to improve Rx Noise factors

