A path forward following lack of complete consensus on COM package models

Liav Ben-Artsi – Marvell Technology

Contributor: Based on former work done by Richard Mellitz and jointly presented in benartsi_3df_01_2211
Agenda

- Recap on package model as presented Nov 2022

- What can we agree upon?! - Justifying model construction

- Package material loss consensus discussions ongoing, will be presented as part of consensus group presentation
Supporters

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
Recap on Assumptions/Former Work

- A realistic package loss/mm for 40µ dielectric height + 27µ-45µ-27µ trace geometry was given as 0.21dB/mm (we will discuss possible cases of lowering loss); Other parts of the package model were optimistic - ~800µ core, 7-2-7 stack-up, no impedance manufacturing tolerance, etc.

- Routing of Tx, or Rx lanes can easily be 40-45mm long, or even longer in congestion cases – Length in this stage to be TBD

- 3D extraction was matched with a four sections package model for COM much better correlation than with 802.3ck model
 - The 4 sections are required to match higher frequency characteristics compared to 802.3ck. – Resulting COM run consistently better than when concatenating to extracted model (~0.2dB – probably some fine details are still left out when using matched model) – Slide #12
802.3dj suggested COM Model - Iteratively adjust γ_0, a_1, a_2, τ

Also tune
- Z_p, Z_c, C_b, C_p

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
COM Model Results

COM MODEL: IEEE802.3 ANNEX 93A.1.2.3

\[\gamma_0 = 0, \ a_1 = 0.0008455, \ a_2 = 0.000340225, \ \tau = 0.00644805 \]

Die side

\[C_b \]

\[Z_{c1}, Z_{p1} \]

\[Z_{c2}, Z_{p2} \]

\[Z_{c3}, Z_{p3} \]

\[Z_{c4}, Z_{p4} \]

\[C_p \]

30ff 92 Ω, 12/30/45 mm 70 Ω, 1.0 mm 80 Ω, 1.0 mm 100 Ω, 0.5 mm 50ff

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
Frequency Domain Comparison

(After concatenation, how well does the “model” channel match “HFSS” channel?)

Example case: 15 mm + 10 dB

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
Time domain SBR comparison

Example case: 15 mm + 10 dB

IEEE P802.3df 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
COM Config Settings

Table 93A–3 parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>package_tl_gamma0_a1_a2</td>
<td>[0 0.0008455 0.000340225]</td>
<td></td>
</tr>
<tr>
<td>package_tl_tau</td>
<td>0.00644805</td>
<td>ns/mm</td>
</tr>
<tr>
<td>package_Z_c</td>
<td>[92 92; 70 70; 80 80; 100 100]</td>
<td>Ohm</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>C_d</th>
<th>[0.4e-4 0.9e-4 1.1e-4; 0 0 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_s</td>
<td>[.12 .15 .14; 0 0 0]</td>
</tr>
<tr>
<td>C_b</td>
<td>[.3e-4 0]</td>
</tr>
<tr>
<td>z_p select</td>
<td>[1 2 3]</td>
</tr>
<tr>
<td>z_p (TX)</td>
<td>[12 30 45; 1 1 1; 1 1 1; 0.5 0.5 0.5]</td>
</tr>
<tr>
<td>z_p (NEXT)</td>
<td>[0 0 0; 0 0 0; 0 0 0; 0 0 0]</td>
</tr>
<tr>
<td>z_p (FEXT)</td>
<td>[12 30 45; 1 1 1; 0.1 0.1 0.1; 0.58 0.58 0.58]</td>
</tr>
<tr>
<td>z_p (RX)</td>
<td>[0 0 0; 0 0 0; 0 0 0; 0 0 0]</td>
</tr>
<tr>
<td>C_p</td>
<td>[0.5e-4 0]</td>
</tr>
</tbody>
</table>
Test Cases

<table>
<thead>
<tr>
<th>Channels</th>
<th>$z_p=15$</th>
<th>$z_p=30$</th>
<th>$z_p=45$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2M_PCB_93ohms_10dB_202208016_v2_thru1.s4p</td>
<td>concat_pkg_15mm_pcb_10dB</td>
<td>concat_pkg_30mm_pcb_10dB</td>
<td>concat_pkg_45mm_pcb_10dB</td>
</tr>
<tr>
<td>C2M_PCB_93ohms_26dB_202208016_v2_thru1.s4p</td>
<td>concat_pkg_15mm_pcb_26dB</td>
<td>concat_pkg_30mm_pcb_26dB</td>
<td>concat_pkg_45mm_pcb_26dB</td>
</tr>
</tbody>
</table>

Channels are from akinwale_3df_elec_01_220921

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
COM Results Comparison

- COM results with the updated fitted model *(blue)* are consistently higher than with HFSS S-parameter concatenation *(green)*
 - The difference is usually 0.2-0.5 dB
 - The “shortest” combination is an exception

- For the high loss channel, the new model is closer to the HFSS results than the ck model *(red)*
 - For the low loss channel, the ck model had worse COM in 2 cases!

- The fitted model is somewhat optimistic...?
 - but in a more consistent way than the old model
Conclusions & Recommendations

- Providing a package model for COM to account for 200Gbps PAM4 signaling requires “high amount of” details in higher frequency than before
- Former .ck package model failed to supply required accuracy
- A suggested higher details model showed relatively consistent results compared to concatenated 3D extracted model
- Recommend adopting new, 4 TL model as the COM model; parameters yet to be decided according to consensus group work
Backup
Ali Ghiasi’s Suggested BGA Configuration

Hypothetical 512x200G Switch

- Likely will require 90x90 BGA
 - Provides V2 for FEXT pairs
 - Provides 2 balls separations for NEXT
 - For the hypothetical switch with 28x34 mm
 die results in 42 mm long substrate trace!

For the BGA ball grid assumed, see https://opg.optica.org/oe/fulltext.cfm?uri=oe-23-3-2085&id=310831

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
No overhead was taken for CMOS, PCIe, or any addition signals.

Routing of Tx, or Rx lanes can easily be 40-45mm long, or even longer in congestion cases.
Expected Losses of Next Gen Material

- ghiasi_3df_01_220927.pdf: “benartsi_3df_01b_2207 uses best ABF conventional 27-45-27 μm construction and reports trace loss of 0.31 dB/mm @53 GHz (loss include transition via/BGA) • Benartsi loss expect to be lower ~0.22 dB/mm after accounting for improved surface roughness”

CK and Next Gen Package Losses for Reduced Trace Width

- Adjust trace width to 27 μm as suggested by benartsi_3df_01b_2207
 - Use the same Hurray surface roughness model that was previously matched best ABF film in 2018/2019
 - Reduced trace width may be required for some high radix switches implementations
 - Losses for 27 μm wide 92.5 Ω stripline traces
 - For best ABF film from 2018/2019 the CK 30 mm package trace loss is 3.94 dB or 0.13 dB/mm instead of assumed 0.109 dB/mm assumed loss @26.56 GHz
 - Next Gen 2022 ABF film the 30 mm package trace loss would be 5.6 dB or 0.19 dB/mm @53.1 GHz (6.75 dB or ~0.225 dB/mm 90°C).

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
Expected Losses of Next Gen Material

- ghias_i_3df_01_220927.pdf: “benartsi_3df_01b_2207 uses best ABF conventional 27-45-27 µm construction and reports trace loss of 0.31 dB/mm @53 GHz (loss include transition via/BGA) • Benartsi loss expect to be lower ~0.22 dB/mm after accounting for improved surface roughness”

CK and Next Gen Package Losses for Reduced Trace Width

- Adjust trace width to 27 µm as suggested by benartsi_3df_01b_2207
 - Use the same Hurray surface roughness model that was previously matched best ABF film in 2018/2019
 - Reduced trace width may be required for some high radix switches implementations
 - Losses for 27 µm wide 92.5 Ω stripline traces
 - For best ABF film from 2018/2019 the CK 30 mm package trace loss is 3.94 dB or 0.13 dB/mm instead of assumed 0.109 dB/mm assumed loss @26.56 GHz
 - Next Gen 2022 ABF film the 30 mm package trace loss would be 5.6 dB or 0.19 dB/mm @53.1 GHz (6.75 dB or ~0.225 dB/mm 90°C).

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
Adjusted Extraction of Loss/mm

- 40µ dielectric height; 15µ copper thickness; 27µ-45µ-27µ trace geometry
- The resulting loss/mm ≈ 0.21dB
- Conductivity was updated to correlate and account for high temperature
- Correlates to the expected and measured loss/mm
S-parameter Concatenation (HFSS model)

Example case: 15 mm + 10 dB

IEEE P802.3df 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
TDR Verification of the Concatenation

Example case: 15 mm + 10 dB

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
COM model parameters
(pkg model added only at Tx/TP0 side)

Table 93A

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Units</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGNOSTICS</td>
<td>logical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_bg</td>
<td>3</td>
<td>0 1 2 or 3 groups</td>
<td></td>
</tr>
<tr>
<td>f_b</td>
<td>106.25</td>
<td>GBd</td>
<td></td>
</tr>
</tbody>
</table>

DISPLAY_WINDOW

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Units</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_bf</td>
<td>3</td>
<td>taps per group</td>
<td></td>
</tr>
<tr>
<td>f_min</td>
<td>0.02</td>
<td>GHz</td>
<td></td>
</tr>
</tbody>
</table>

CSV_REPORT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Units</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>package_tl_gamma0_a1_a</td>
<td>8.455e-4</td>
<td>3.40225e-4</td>
<td></td>
</tr>
<tr>
<td>N_f</td>
<td>80</td>
<td>UI span for floating taps</td>
<td></td>
</tr>
<tr>
<td>Delta_f</td>
<td>0.02</td>
<td>GHz</td>
<td></td>
</tr>
</tbody>
</table>

RESULT_DIR

Path

Path: `package_Z_c` [92 92; 70 70; 80 80; 100 100] Ohm

bmaxg | 0.2 | max DFE value for floating taps |

C_d [40 90 110; 40 90 110] * 1e-6 nF [TX RX]

SAVE_FIGURES

0 | logical |

ICN & FOM_ILD

parameters

N_tail_start | 24 |

COM_CONTRIBUTION

0 | logical |

f_n | 0.371 | GHz |

z_p select [test cases to run]

z_p (TX) [0.13 0.15 0.14; 0.13 0.15 0.14] nH [TX RX]

Port Order [1 3 2 4]

f_v | 0.371 * Fb |

B_float_RSS_MAX | 0.1 |

f_2 | 58.4375 | GHz |

C_b [30e-6 30e-6] nF [TX RX]

RUNTAG

C2M_eval_ f_f | 0.371 | GHz |

f_f | 0.371 | GHz |

z_p (NEXT) [0 0 0; 0 0 0; 0 0 0; 0 0 0] mm [test cases]

Operational

A_ft | 0.600 | V |

z_p (FEXT) [15 30 45; 1 1 1; 1 1 1; 0.5 0.5 0.5] mm [test cases]

COM Pass threshold 3 | dB |

A_nt | 0.600 | V |

z_p (RX) [0 0 0; 0 0 0; 0 0 0; 0 0 0] mm [test cases]

C_p [50e-6 0] nF [TX RX]

ERL Pass threshold 7.3 | dB |

Histogram_Window_Weigh

Gaussian, triangle, rectangle

R_0 | 50 | Ohm |

sigma_r | 0.02 | |

R_d [50 50] Ohm [TX RX]

A_v | 0.413 | V |

T_r | 6.00E-03 | ns |

A_ne | 0.608 | V |

PMD_type

C2C

L | 4 |

BREAD_CRUMBS

0 | logical |

board_tl_tau | 0.00579 | ns/mm |

M | 32 |

Samp/UI

SAVE_CONFIG2MAT

1 | logical |

board_Z_c | 100 | Ohm |

samples_for_C2M | 100 | Samp/UI |

PLOT_CM

0 | logical |

z_bp (TX) | 407 | mm |

T_O | 50 | mUI |

TDR and ERL options

z_bp (NEXT) | 407 | mm |

AC_CM_RMS

0 | V [test cases]

TDR

1 | logical |

z_bp (FEXT) | 407 | mm |

filter and Eq

ERL

1 | logical |

z_bp (RX) | 407 | mm |

c(0) | 0.5 | min |

TR_TDR | 0.01 | ns |

c(-1) [-0.34:0.02:0] [min:step:max]

N | 1200 | |

c(-2) [0:0.02:0.14] [min:step:max]

beta_x | 0 |

c(-3) [-0.06:0.02:0] [min:step:max]

rho_x | 0.618 |

c(-4) [-0.06:0.02:0] [min:step:max]

fixture delay time [0 0] different for each test fixture

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
Thank You!