A consensus baseline proposal for Inner FEC processing rate for Type 2 PHYs

Xiang He, Huawei Kechao Huang, Huawei Lenin Patra, Marvell Arash Farhood, Marvell Vasu Parthasarathy, Broadcom

Goal of this Presentation

This presentation describes a consensus proposal to adopt a common rate for FEC_I lane for 200GbE, 400GbE, 800GbE, 1.6TbE MAC configuration.

Recap of Status of FEC_I Architecture & Work in Progress

Recap of Rate of FEC_I Convolutional Interleaver for Both Proposals

AUI

Lenin's Proposal:

- Rate specific Alignment Logic blocks
- 20b or 40b symbol distribution based 1:8 demux
 <u>before</u> Convolutional Interleaver
- Rate specific convolutional Interleaver
- ** Topic of debate between both the proposal was
 - Position of 1:8 Demux <u>before</u> or <u>After</u> Convolutional Interleaver

Xiang's Proposal:

- Rate independent Logic blocks
- One common Convolutional Interleaver
- 120b codeword distribution based 1:8 demux <u>after</u> Convolutional Interleaver

Progress of FEC_I Architecture since then:

- Symbol-pair muxing has been fully adopted for 200G/lane signaling.
 - See ran_3dj_01a_2303, and motions_3dfdj_2303.
- 4xRS CWs interleaving in the PMA has been proposed to ensure same performance for 200GE and 400GE when using 200G/lane signaling. Essentially – for every MAC up to 1.6TbE, FEC codeword will be aligned <u>with 40b symbol</u> boundaries.
 - See <u>he 3dj 02 2305</u>
- If 4XRS CW interleaving scheme gets adopted, then it simplifies the implementation of rate dependent logic blocks to one common universal Logic blocks.
- This presentation provides the details of a common rate for convolutional interleaver and proposes a **universal 200G/Lane rate based CI** for FEC_I sublayer with final delay numbers

Proposed Architecture Overview:

- The current proposals focused on inner FEC implementations inside module DSP.
- Symbol-pair muxing PMA sublayer is assumed to be above the FEC_I sublayer for all proposals.
- One **<u>common interleaver</u>** and **<u>de-interleaver</u>** is proposed to complete the FEC_I sublayer architecture

Source: patra_3dj_01b_2303.pdf

Proposed Update to Symbol-pair Muxing PMA:

• FEC_I sublayer is the sublayer below symbol-pair muxing PMA.

PMA family Specific PMAs		Sublayer/interface above	Sublayer/Interface below	
	PMA(8:1)	200GBASE-R PCS / DTE XS	200GAUI-1 / FEC_I / PMD	
R8F	PMA(16:2)	400GBASE-R PCS / DTE XS	400GAUI-2 / FEC_I / PMD	
	PMA(32:4)	800GBASE-R PCS / DTE XS	800GAUI-4 / FEC_I / PMD	
	PMA(2:1)	200GAUI-2	200GAUI-1 / FEC_I / PMD	
R2F	PMA(4:2)	400GAUI-4	400GAUI-2 / FEC_I / PMD	
	PMA(8:4)	800GAUI-8	800GAUI-4 / FEC_I / PMD	
	PMA(1:1)	200GAUI-1	200GAUI-1 / FEC_I / PMD	
D1	PMA(2:2)	400GAUI-2	400GAUI-2 / FEC_I / PMD	
KI	PMA(4:4)	800GAUI-4	800GAUI-4 / FEC_I / PMD	
	PMA(8:8)	1.6TAUI-8	1.6TAUI-8 / FEC_I / PMD	
	PMA(16:8)	1.6TBASE-R PCS / DTE XS / 1.6TAUI-16	1.6TAUI-8 / FEC_I / PMD	

Source: <u>ran_3dj_01a_2303</u>, with modifications in **Blue**

Example of Transmit and Receive Processing for FEC_I Sublayer with 200G/Lane & 100G/Lane AUI

RX Processing Path

Transmit path overview

Receive path overview

200G/lane Common Convolutional Interleaver Design for 200G/400G/800G/1.6TbE

- An universal 200G/lane convolutional interleaver is proposed for different MACs to unify the processing
 - If 4x RS CWs interleaving in the PMA proposal is adopted, the convolutional interleaver logics will be further shared among all the MACs .
- For latency sensitive applications, convolutional interleaver can be bypassed.

Rate	d (RS symbol)	Ρ	Q	Depth	Latency ns	FEC_I Lane Rate
1.6TE	4	3	24	12x RS	27.1	
800GE	4	3	48	12x RS	54.2	
400GE	4*	3	96	12x RS	108.4	2000/lana
200GE	4*	3	192	12x RS	216.8	200G/lane
400GE	2	6	48	12x RS	135.5	
200GE	2	6	96	12x RS	271.1	

*If 4x RS interleaving for 200GE/400GE is adopted.

A complete View of <u>FEC_I Sublayer</u> Architecture with Common Convolutional Interleaver

Summary

- A common 200G/lane based convolutional interleaver for FEC_I sublayer is presented in this proposal for 200G/400G/800G/1.6T MAC configurations .
 - This is the key TBD item for a complete FEC_I sublayer baseline.
- The presented proposal also works well with already adopted FEC_I sublayer and 200G/lane symbol muxing based PMA sublayers.

Thank you!