Consideration on Framing Sequence for Type 2 Inner FEC

Kechao Huang, Xiaoling Yang, Qinhui Huang, and Huixiao Ma Huawei Technologies

Background

- Type 2 PHY/FEC with Inner(128,120) code and padding was adopted
 - See patra_3dj_01b_2303, and motion #5 in motions_3dfdj_2303 in March 2023
 - □ Insert 384 padding bits after every 3264 Hamming codewords → 113.4375GBaud
 - □ Framing Sequence (FS) included in padding bits for synchronization in receiver
- FS synchronization was analyzed in <u>barakatain_3dj_01a_2303</u>

- Interleaved Interleaved Interleaved Hamming Hamming Framing Codeword Codeword Codeword #3264 Sequence 128b 128b 128b 128b 128b PAD1 (128b) PAD2 PAD3 3264*128+384 = 418,176 bits From patra 3dj 01b 2303
- Consider 48-bit FS (0x9A, 0x4A, 0x26, 0x65, 0xB5, 0xD9) same as the 200G/400G/800G PCS AM (common marker portion)
- \Box Suggest the FS lock process: Each FS lock looks for n=3 valid FS, and Out of FS Lock is when k=6 invalid FS observed
- Simplified pad insertion was proposed in <u>rechtman_3dj_01a_2305</u>
 - □ Propose to insert 1024 (8 × 128) padding bits after every 8704 Hamming codewords, in addition to Hamming interleaver protection
 - In order to allow possible implementation of Search & Test synchronization

This presentation

- Provide detailed FS lock process including FS lock state diagram for future draft document
- Propose to improve the FS format for hardware reuse purpose
- Analyze the Search & Test synchronization method

FS lock process

- Recap on the analysis on FS lock process
 - Consider the 48-bit FS (0x9A, 0x4A, 0x26, 0x65, 0xB5, 0xD9) same as the common marker (CM) portion of the 200G/400G/800G PCS AM*
 - The FS divided into 12 half-byte nibbles; If m=9 or more nibbles in the candidate block match the corresponding known nibbles in the FS portion, the candidate block is considered a valid FS⁺
 - Each lock looks for n=3 valid FS, and Out of Lock if k=6 invalid FS observed, for guaranteeing true lock with very high probability, with expected time to failure > AOU
- Probability Calculation:
 - Probability of falsely locked P_{fl} : equals to p_{fl}^n , where $p_{fl} = \sum_{i=m}^{12} {12 \choose i} (1 p_0)^i * p_0^{12-i}$, with $p_0 = 15/16$ corresponding to a mismatched nibble.
 - Probability of falsely unlocked P_{fu} : equals to p_{fu}^k , where $p_{fu} = \sum_{i=0}^{m-1} {12 \choose i} * p_1^{12-i} * (1-p_1)^i$, with $p_1 = 1 (1-\text{BER})^4$, where BER=4.8e-3 is assumed in the tables below.
 - Mean time to truly locked state is roughly estimated by (n -0.5)×group delay, where group delay corresponds to ~1.8μs (418176 bits)

	P_fl	Mean time to false alignment (years)			
threshold m		n=2	n=3	n=4	
12	3.55E-15	1.16E+15	3.26E+29	9.17E+43	
11	6.43E-13	3.57E+10	5.59E+22	8.74E+34	
10	5.34E-11	5.25E+06	9.95E+16	1.89E+27	
9	2.69E-09	2.10E+03	7.96E+11	3.02E+20	
8	9.17E-08	1.84E+00	2.07E+07	2.33E+14	
7	2.23E-06	3.20E-03	1.50E+03	7.01E+08	

		Mean time to false unlock (years)				
threshold m	P_fu	k=3	k=4	k=5	k=6	
6	6.58E-10	2.05E+14	3.12E+23	4.74E+32	7.21E+41	
7	4.02E-08	9.03E+08	2.25E+16	5.60E+23	1.39E+31	
8	1.78E-06	1.03E+04	5.79E+09	3.25E+15	1.82E+21	
9	5.78E-05	3.02E-01	5.23E+03	9.05E+07	1.57E+12	
10	1.34E-03	2.43E-05	1.82E-02	1.36E+01	1.01E+04	
11	2.11E-02	6.20E-09	2.94E-07	1.39E-05	6.58E-04	
12	2.06E-01	6.66E-12	3.23E-11	1.57E-10	7.60E-10	

Remark: highlighted with green represent greater than AOU.

From barakatain 3dj 01a 2303

Figure 119-12-Alignment marker lock state diagram

From IEEE 802.3 Clause 119

- *The 0x9A4A2665B5D9 in previous contributions is typo. Note that each octet is transmitted LSB to MSB.
- +This process is same as the CM sync, see the amp_valid description in "IEEE 802.3-2022 119.2.6.2.2 Variables"

FS lock process: lock state diagram

- □ The 800G receiver (with 4 lanes) shall implement 4 FS lock processes and an FS process operates independently on each lane
- □ The FS lock can identify both the Hamming codeword boundary and the location of padding bits

Proposed FS format (1/2)

- Essential function in the FS lock process:
 - The 48-bit FS portion are compared on a nibble-wise basis (12 comparisons)
 - The FS are continuous in the bits stream, which may not be hardware reuse friendly
- Propose to organize the groups of FS
 - Mimic the organization of the 200G/400G/800G PCS AM, and allow the logic reuse
 - The 48-bit FS consist of two groups, each with three bytes
 - There is a one byte gap between the two groups.

Corresponding FS sync correlator

Corresponding FS sync correlator

Proposed FS format (2/2)

- The effect on the padding specification*
 - □ The position of "1-byte Message index" was changed to "be located between two 3-byte FS groups"
 - □ The size of "1-byte Message index", "1-byte Message type", and "36-byte Message content" remain the same

Padding Specification

- 384 bits = 3 CW using 128, 120 code
 - Payload bits = 360 (=45 B), parity = 24 bits
- 45 data bytes composed as follows
 - 6 byte frame sync field (same as 200G/400G PCS AM, offers DC balance & hardware reuse):
 - 0x9A4A2665B5D9
 - Remaining 312 bits are scrambled with PRBS13, using generator polynomial X¹³ + X¹² + X² + X + 1, seed
 reset to 0xCCC for each pad fragment):
 - · 38 byte Message field Start of scrambling with PRBS
 - 8 bit message index (8 bit counter 0 to 255)
 - · 8 bit message type (see slides 4 & 5)
 - 36 bytes message content
 - 1 byte CRC8 (calculated on previous 38 bytes) polynomial is X⁸+X⁵+X⁴+1
- The 38-bytes message field (details to be specified) can be used to convey link and signal-related information, such as receiver state, channel pulse response, FEC stats, etc

From patra 3dj 01b 2303

Proposed 24-bit FS + 24-bit FS format

*It can easily be extended for the Simplified Pad Insertion in rechtman 3dj 01a 2305

The Search & Test synchronization: at first glance (1/2)

- The inner codeword boundary can be identified by using the Hamming syndrome checking
 - □ At first glance, an inner codeword boundary state machine may search for a pre-defined number T of zero-syndrome received inner "codewords" in a window of $128 \times W$ received bits \Rightarrow may not work
 - \blacksquare Here, take W = 16 and error-free received bits as example.

The Search & Test synchronization: at first glance (2/2)

- The inner codeword boundary can be identified by using the Hamming syndrome checking
 - □ At first glance, an inner codeword boundary state machine may search for a pre-defined number T of zero-syndrome received inner "codewords" in a window of $128 \times W$ received bits \Rightarrow may not work
 - \blacksquare Here, take W = 16 and error-free received bits as example.

Potential Search & Test synchronization method (1/8)

- The inner codeword boundary can be identified by using the Hamming syndrome checking
 - Need to take into consideration the effect of the 8-way Hamming codeword interleaver
 - □ In the receiver side, the received bit stream is de-interleaved into eight sub-streams
 - \blacksquare Each S&T state machine on a sub-stream searches for T zero-syndrome received "codewords" in a window of $128 \times W$ received bits

Potential Search & Test synchronization method (2/8)

- The inner codeword boundary can be identified by using the Hamming syndrome checking
 - Need to take into consideration the effect of the 8-way Hamming codeword interleaver
 - □ In the receiver side, the received bit stream is de-interleaved into eight sub-streams
 - \blacksquare Each S&T state machine on a sub-stream searches for T zero-syndrome received "codewords" in a window of $128 \times W$ received bits

Potential Search & Test synchronization method (3/8)

- The inner codeword boundary can be identified by using the Hamming syndrome checking
 - Need to take into consideration the effect of the 8-way Hamming codeword interleaver
 - In the receiver side, the received bit stream is de-interleaved into eight sub-streams
 - Each S&T state machine on a sub-stream searches for **T** zero-syndrome received "codewords" in a window of 128×W received bits

Potential Search & Test synchronization method (4/8)

- The inner codeword boundary can be identified by using the Hamming syndrome checking
 - Need to take into consideration the effect of the 8-way Hamming codeword interleaver
 - In the receiver side, the received bit stream is de-interleaved into eight sub-streams
 - Each S&T state machine on a sub-stream searches for **T** zero-syndrome received "codewords" in a window of 128×**W** received bits

Potential Search & Test synchronization method (5/8)

- The inner codeword boundary can be identified by using the Hamming syndrome checking
 - Need to take into consideration the effect of the 8-way Hamming codeword interleaver
 - □ In the receiver side, the received bit stream is de-interleaved into eight sub-streams
 - Each S&T state machine on a sub-stream searches for T zero-syndrome received "codewords" in a window of $128 \times W$ received bits

Potential Search & Test synchronization method (6/8)

- The inner codeword boundary can be identified by using the Hamming syndrome checking
 - Need to take into consideration the effect of the 8-way Hamming codeword interleaver
 - □ In the receiver side, the received bit stream is de-interleaved into eight sub-streams
 - \blacksquare Each S&T state machine on a sub-stream searches for T zero-syndrome received "codewords" in a window of $128 \times W$ received bits

Potential Search & Test synchronization method (7/8)

- The inner codeword boundary can be identified by using the Hamming syndrome checking
 - Need to take into consideration the effect of the 8-way Hamming codeword interleaver
 - □ In the receiver side, the received bit stream is de-interleaved into eight sub-streams
 - \blacksquare Each S&T state machine on a sub-stream searches for T zero-syndrome received "codewords" in a window of $128 \times W$ received bits

Potential Search & Test synchronization method (8/8)

- The inner codeword boundary can be identified by using the Hamming syndrome checking
 - Need to take into consideration the effect of the 8-way Hamming codeword interleaver
 - In the receiver side, the received bit stream is de-interleaved into eight sub-streams
 - Each S&T state machine on a sub-stream searches for **T** zero-syndrome received "codewords" in a window of 128×W received bits

Comments on the Search & Test synchronization

- The inner codeword boundary can be identified by using the Hamming syndrome checking
 - Traditional S&T synchronization method may use an inner codeword boundary state machine to search for a pre-defined number T of zero-syndrome received inner "codewords" in a window of $128 \times W$ received bits, which is operated on the received bit stream
 - □ Above traditional S&T synchronization method may not work, need to be improved
 - □ The effect of the 8-way Hamming codeword interleaver need to be taken into consideration
- One potential S&T synchronization method is provided to identify the Hamming codeword boundary
 - □ In the receiver side, the received bit stream is de-interleaved into eight sub-streams
 - \blacksquare Each S&T state machine on a sub-stream searches for **T** zero-syndrome received "codewords" in a window of $128 \times W$ received bits
 - □ The FS lock is still required to identify the location of padding bits after the above Search & Test synchronization

Summary and Conclusions

- We presented detailed framing sequence (FS) lock process for future draft document
 - Consider the 48-bit FS (0x9A, 0x4A, 0x26, 0x65, 0xB5, 0xD9) same as the common marker (CM) portion of 200G/400G/800G PCS AM
 - Include detailed state diagram of Framing sequence lock
 - □ The FS lock can identify both the Hamming codeword boundary and the location of padding bits
- We proposed an improved FS format
 - □ Mimic the organization of the 200G/400G/800G PCS AM for hardware reuse purpose
 - □ The 48-bit FS consist of two groups, each with three bytes, and there is a one byte gap between the two groups
- We discussed and analyze the Search & Test synchronization method
 - □ The proposed Search & Test synchronization can be used to identify the Hamming codeword boundary
 - □ The FS lock is still required to identify the location of padding bits after the Search & Test synchronization

Thank you