Logic Baseline proposal for 800G single-wavelength coherent PHY with concatenated FEC

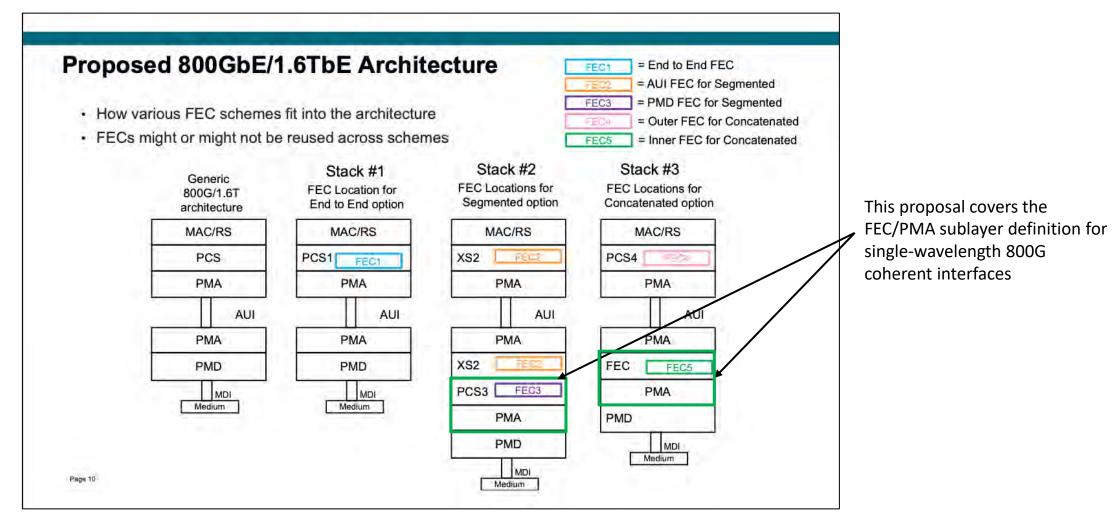
Kishore Kota – Marvell Eric Maniloff – Ciena Arnon Loewenthal – Alphawave

P802.3dj Plenary Meeting, Berlin, Germany, July 2023

Supporters

- Ian Betty Ciena
- Paul Brooks Viavi
- David Cassan Alphawave
- Tony Chan Carusone Alphawave
- Frank Chang Source Photonics
- Piers Dawe Nvidia
- Arash Farhood Marvell
- Sebastien Gareau Ciena
- Ali Ghiasi Ghiasi Quantum
- Tao Gui Huawei
- James Harley Ciena
- Xiang He Huawei

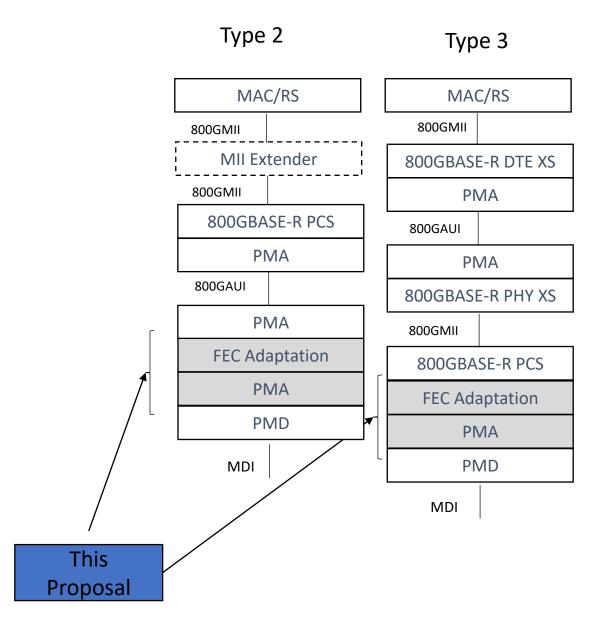
- Kechao Huang Huawei
- Hideki Isono Fujitsu Optical Components
- Madhu Krishnamurthy Lumentum
- Michael Strunz-Kroll euNetworks
- Cedric Lam Google
- Samuel Liu Marvell
- Wendell Liu AT&T
- Xiang Liu Huawei
- Jeff Maki Juniper
- Guangcan Mi Huawei
- Ernest Muhigana Lumentum
- Jeff Nichols Ciena


- Gurinder Parhar

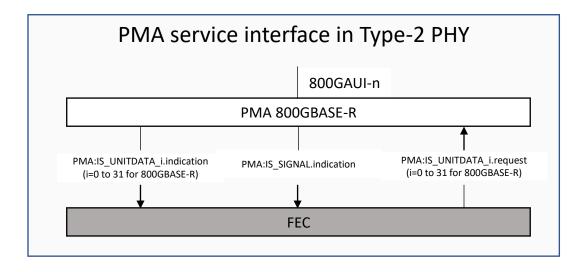
 Source Photonics
- Charles Park Juniper
- Lenin Patra Marvell
- Atul Strivastava NEL
- Peter Stassar Huawei
- Dan Tauber Lumentum
- Or Vidal Alphawave
- Chongjin Xie Alibaba
- Shuang Yin Google
- Bo Zhang Marvell
- Xiang Zhou Google
- Yanjun Zhu Hisense

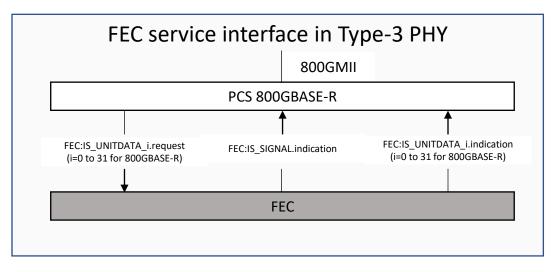
Logic Baseline Requirements

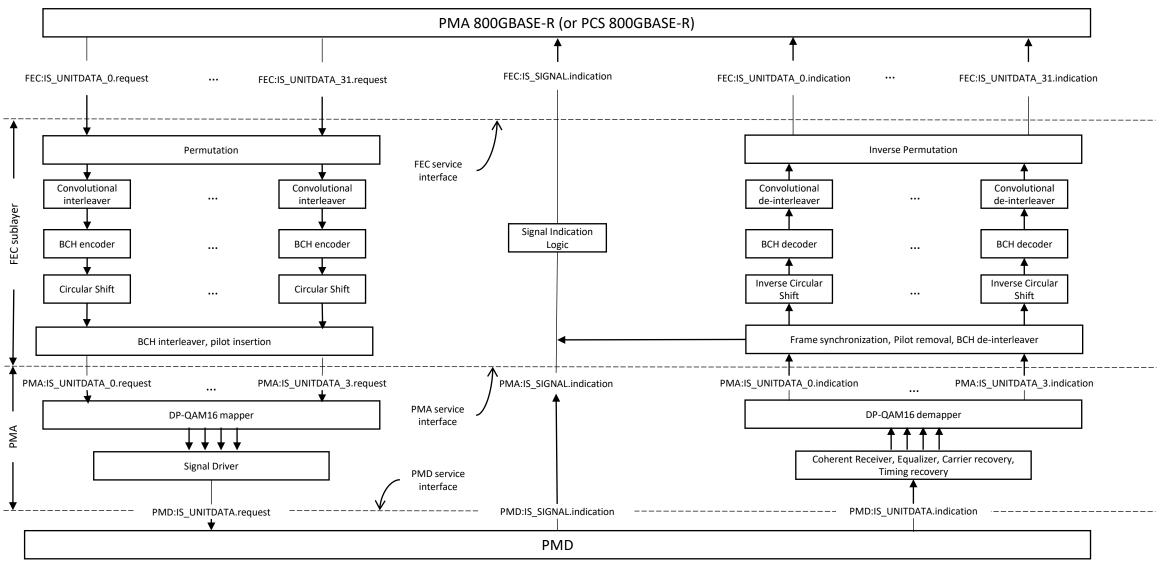
- Support 800GE MAC
- Support single-wavelength 800G coherent line interface
- Adhere to the adopted logic architecture (gustlin 3df 01a 220517)
- Support up to 2xAUIs per link side
 - AUIs are lane rate independent (for e.g. one AUI at 200G/lane and another at 100G/lane)
- Support FEC requirements of single-wavelength coherent interfaces
- Support requirements which are unique to single-wavelength coherent interfaces (such as burst error tolerance, unequal bit error rates, laser phase noise tolerance, ability to recover carrier offset etc.)


Adopted logic architecture for reference

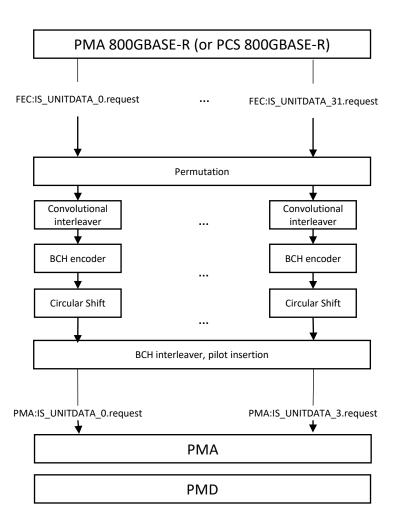
gustlin 3df 01a 220517.pdf


This proposal

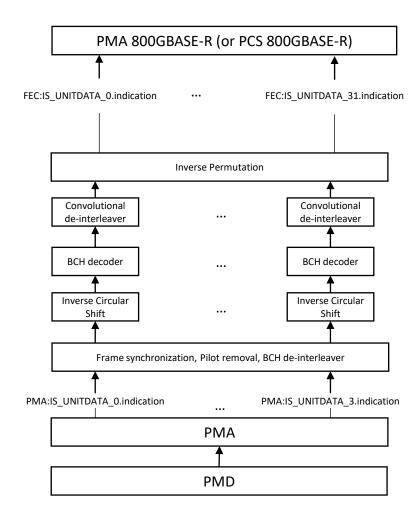

- Based on a Type 2 FEC/PHY scheme ("concatenated PHY") as described in brown 3dj optx adhoc 01a 230222
 - Same architecture as patra 3dj 01b 2303
 - Supports Type 3 ("segmented PHY") using extended sublayer, if needed
- AUIs are supported using the 800GMII Extender
 - 800GAUI-8 defined in 802.3df
 - 800GAUI-4 will be defined in 802.3dj

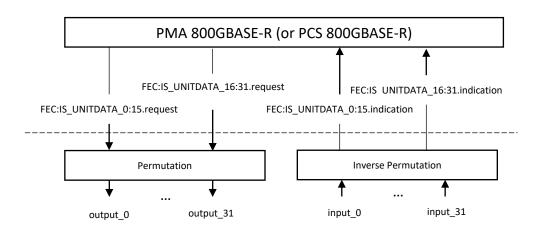

FEC Service interface

- The FEC service interface allows the 800GBASE-R PCS to transfer information to and from the 800G PHY in Type-3 ("segmented") PHYs
- This interface supports the exchange of encoded data between the PCS and the FEC sublayer
- This interface is identical to the 800GBASE-R PMA service interface

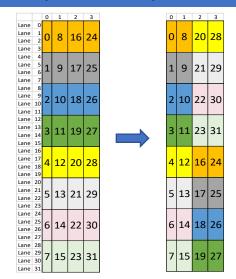


FEC/PMA Sublayer Block Diagram

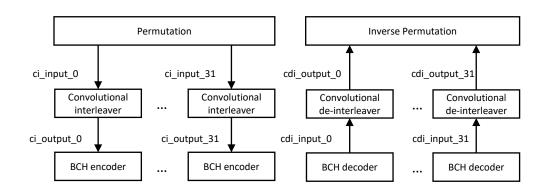

FEC Sublayer Transmit Path


- Encode 32 PCS lanes into 4 physical lanes (XI/XQ/YI/YQ)
- Permutation block ensures symbols from four RS(544,514)
 FEC are provided at input of convolutional interleavers to minimize latency
- Convolutional interleavers ensure that the RS symbols at input of each BCH encoder are provided from 11 different RS(544,514) codewords
- BCH(126,110) inner code provides tolerance to high bit error rate when concatenated with the outer RS(544,514)
- Circular shift combined with BCH interleaver maximizes tolerance to burst errors and unequal bit error rate of the bits decoded from each DP-QAM16 symbol
- Pilot symbols provide ability to handle high laser phase noise with minimal complexity and provides information for frame synchronization
- Details of all these blocks in subsequent slides

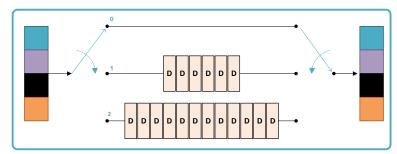
FEC Sublayer Receive Path


- Decode 4 physical lanes (XI/XQ/YI/YQ) into 32 PCS lanes
- Most of the decoding in the FEC layer is done per PCS lane
- Frame synchronization can be done based on pilot symbols

Permutation/Inverse Permutation Functions



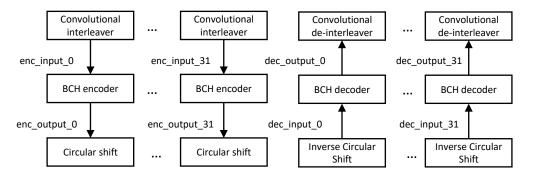
Pictorial Description of the permutation function



- Purpose: Provides 10bit symbols from 4 interleaved RS(544,514) codewords on each of 32 PCS lanes
- Prerequisites: 10bit symbol alignment across lanes. Lane reorder and FEC codeword deskew across lanes is optional
- Operates on 4 RS-symbol boundaries across 32 PCS lanes
- In the transmit direction, the permutation function maps the bits received on thirty-two PCS lanes through the FEC:IS_UNITDATA_0:31.request primitives and maps them to output lanes output_0:31
 - Denote the index of the PCSL as p (p=0 to 31), where the bits for the pth lane are obtained through FEC:IS_UNITDATA_p.request
 - Denote the index of the aligned input 10-bit block across the PCSLs as i and the bit index within block i as j(j=0 to 9).
 - Denote the index of the output lanes as q (q=0 to 31)
 - The mapping between the bit sequences on the PCSL and the output_q is:
 - $output_q[10i + j] = PCSL[(q + 16[i/2])\%32, 10i + j]$
- In the receive direction, the inverse permutation function maps the bits received on input lanes input_0:31 to thirty-two PCS lanes and provides this data through the FEC:IS_UNITDATA_0:31.indication primitives. Using similar definitions as the transmit, the mapping between the bit sequences on input glanes and the PCSL is:
 - $PCSL[(q + 16[i/2])\%32, 10i + j] = input_q[10i + j]$

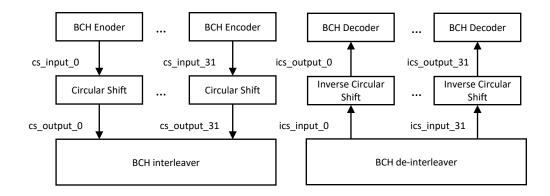
Convolutional interleaver/de-interleaver Functions

Pictorial Description of the convolutional interleaver function


<u>Interleaver Latency of 55 nanoseconds</u>

- Purpose: Ensure each BCH codeword contributes no more than one 10-bit RS symbol to each RS codeword.
 - One Convolutional Interleaver per PCS lane.
 - Interleaver has three parallel delay lines
 - D represents storage of 40b
 - Word width is 4 symbols or 40 bits at I/O
- In the transmit direction, the convolutional interleaver function maps the bits received on ci_input_0:31 lanes from the permutation function and maps them to output lanes ci_output_0:31
 - Denote the input and output of the convolutional interleaver of the pth lane as ci_input_p and ci_output_p respectively (p=0 to 31)
 - Denote the index of the aligned output 40-bit block as i and the bit index within block i as j(j=0 to 39). The block index i is synchronized to the pilot insertion function described in a subsequent slide. The 40-bit blocks are aligned to block boundaries of the permutation function.
 - The mapping between the bit sequences on ci_input_p and ci_output_p is:

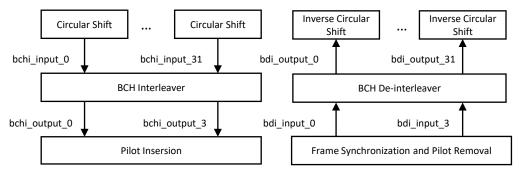
•
$$ci_output_p[40i + j] = ci_input_p[40 * (i - 18 * (i\%3)) + j]$$


- In the receive direction, the convolutional de-interleaver function maps the bits received on cdi_input_0:31 lanes from the BCH decoder function and maps them to output lanes cdi_output_0:31
 - Denote the input and output of the convolutional de-interleaver of the pth lane as cdi_input_p and cdi_output_p respectively (p=0 to 31)
 - Denote the index of the aligned input 40-bit block as i and the bit index within block i as j(j=0 to 39). The index i is synchronized to the frame synchronization function described in a subsequent slide
 - The mapping between the bit sequences on cdi_input_p and cdi_output_p is:
 - $cdi_output_p[40 * (i + 18 * (2 i\%3)) + j] = cdi_input_p[40 * i + j]$

BCH Encoder/Decoder Functions

- Purpose: Inner code works in conjunction with outer KP4 FEC to provide a high-performance FEC for 800LR
 - BCH (126,110) code operates on 11 RS symbols at output of convolutional interleaver
 - Simple Chase decoders can achieve a pre-FEC BER threshold of ~1.1e-2 for a post-KP4 BER of 1e-15
- Code definition:
 - Define c as a binary vector of length 126, and c(x) a polynomial of degree 125 with the coefficients defined by c (where the bit 0 of c represents the coefficient of power 125).
 - Then c is a codeword of the BCH(126,110) code if c(x) is divisible (module 2) by the defined binary generator polynomial g(x)
- In the transmit direction, the BCH encoder function maps the bits received on enc_input_0:31 lanes from the convolutional interleaver function and maps them to output lanes enc output 0:31
 - The bits of enc_input_p (p=0 to 31) are obtained from the convolutional interleaver output lanes ci_output_p. Denote the index of the aligned 40-bit block at the convolutional interleaver output as i and the bit index within block i as j(j=0 to 39) where i and j are identical to the indices used in the definition of the convolutional interleaver function.
 - Denote the index of the BCH encoder block as u and the bit index within the input block is v (v=0 to 109). The indices u and v are related to i and j and defined as $u riangle \lfloor (40i+j)/110 \rfloor$ and v riangle (40i+j)%110
 - The encoding of each block u on lane p is defined as follows:
 - A message polynomial m(x) of degree 109 is defined where the coefficient of the x^{109-v} term is enc_input_p[110*u+v] for v=0 to 109
 - A generator polynomial g(x) of degree 16 is defined as $g(x) = x^{16} + x^{14} + x^{11} + x^{10} + x^9 + x^7 + x^5 + x^3 + x + 1$
 - A parity polynomial p(x) of degree 15 is defined as the remainder from the division (module 2) of $m(x) * x^{16}$ by the generator polynomial g(x). $p(x) = p_{15}x^{15} + p_{14}x^{14} + \cdots + p_{1}x + p_{0}$
 - The bit mapping of the encoder output enc_output_p is defined as follows
 - $enc_output_p[126u + v] = \begin{cases} enc_input_p[110u + v] & for \ v = 0 \ to \ 109 \\ p_{125-v} & for \ v = 110 \ to \ 125 \end{cases}$
- In the receive direction, the BCH decoder function uses the signal received on dec_input_0:31 lanes from the frame synchronization/pilot removal function and maps them to output bit lanes dec output 0:31

Circular Shift/Inverse Circular Shift Functions

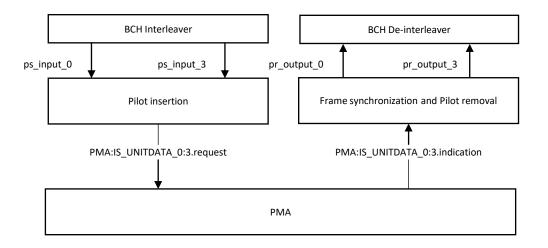


- Purpose: Works in conjunction with the BCH interleaver function to improve robustness to burst errors by spreading out the bursts over more RS(544,514) codewords
- In the transmit direction, the circular shift function maps the bits received on cs_input_0:31 lanes from the BCH encoder function and maps them to output lanes cs_output_0:31
 - Denote the input and output of the circular shift function of the pth lane as cs_input_p and cs_output_p respectively (p=0 to 31). The bits of cs_input_p are the bits at the output of the BCH encoder enc_output_p.
 - Denote the index of the 126-bit BCH codeword block aligned across all lanes as i and the bit index within block i as j(j=0 to 125) where j=0 to 109 are the information bits and bits j=110 to 125 are the check bits inserted by the systematic BCH encoder.
 - The mapping between the bit sequences on the ci_input_p and the ci_output_p (p=0 to 31) is:

•
$$ci_output_p[j] = \begin{cases} ci_input_p[(j-20p)\%110] & if j < 110 \\ ci_input_p[j] & otherwise \end{cases}$$

• In the receive direction, the inverse circular shift function maps the signal received on ics_input_0:31 lanes from the frame BCH de-interleaver function and maps them to output lanes ics_output_0:31. The mapping of this function is the inverse of the circular shift

BCH Interleaver/De-interleaver Function

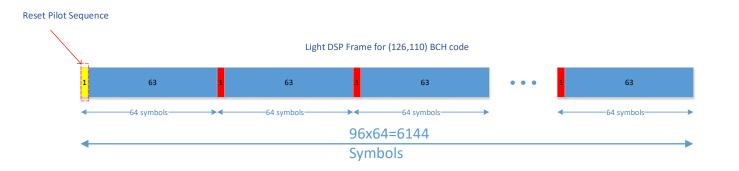


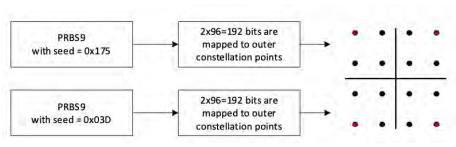
- Purpose: Works in conjunction with the circular shift to improve robustness to burst errors and unequal bit error rates of the bits extracted from the DP-QAM16 symbols
 - The interleaver works by ensuring that the bits of each BCH codeword are spread evenly across all dimensions of the DP-QAM16 symbols after mapping in the PMA sublayer
 - The BCH interleaver works on a block of 32 synchronized BCH codewords generated on the 32 PCS lanes
- In the transmit direction, the BCH interleaver function maps the bits received on bchi_input_0:31 lanes from the circular shift function and maps them to output lanes bchi_output_0:3
 - Denote k as the index of the 126-bit codeword block aligned across all lanes p (p=0 to 31) at the output of the circular shift blocks.
 - Denote q (q=0 to 3) as the index of the output lane bchi output q
 - Denote (2I+j) as an index (I=0 to 503 and j=0 to 1) of the bits within the k^{th} block of output bits formed from the k^{th} input bit block
 - The mapping between the bit sequences on bchi_input_p and bchi_output_q is:

$$bchi_output_q[2l+j] = bchi_input_d \left(4 * \left| \frac{l}{63} \right| + \left(2l + \left| \frac{l}{2} \right| \%2 + q \right) \%4 \right) [2 * l\%63 + (l+j)\%2]$$

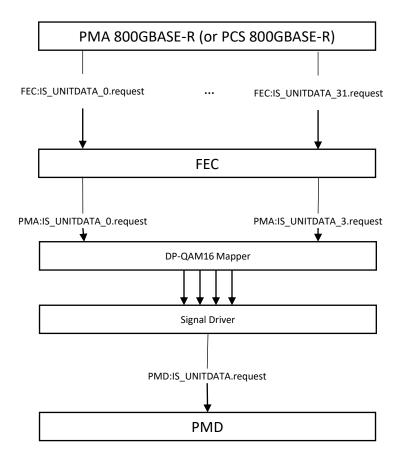
• In the receive direction, the BCH de-interleaver performs the inverse function to map the information received on input lanes bdi_input_0:3 to the correct location within the output lanes bdi_output_0:31

Pilot Insertion/Removal and Frame Synchronization Functions

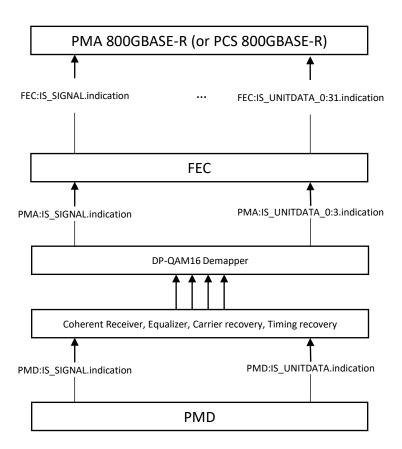


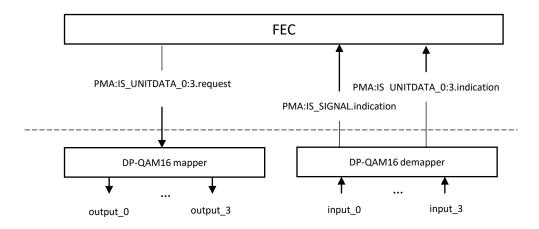

- Purpose: Pilot symbols are implemented as the outer symbols of the DP-16QAM constellation, allowing robust framing to a DP-QPSK constellation
 - Pilots are inserted every 64 symbols (one pilot symbol, 63 payload symbols.)
 - 63 payload symbols is an easy multiple for BCH(126,110), no RES (padding) needed
 - A DSP Frame is 96*64=6144 symbols including 96 pilots.
 - The pilot sequence is a PRBS9 pattern initialized at the beginning of the DSP Frame.
 - Seed value for pilot reset is chosen to ensure DC balance.
- In the transmit direction, the pilot inserter function maps the bits received on ps_input_0:3 lanes from the BCH interleaver function and maps them to output lanes ps_output_0:3 and provides these output bits through the PMA:IS_UNITDATA_0:3.request primitives
 - Denote u as the index of the 126-bit codeword block at the input of the pilot inserter function aligned across all lanes q (q=0 to 3) and aligned to the boundaries of the BCH encode function. The index u is identical to the index u used in the definition of the BCH encode function.
 - The pilot sequence ps[q,k] for lane q (q=0 to 3) and index k (k=0 to 95) is defined as the output of a PRBS9 generator. The sequences are zero-balanced in each lane and have low correlation across lanes.
 - The mapping between the bit sequences on the ps_input_q and the ps_output_q (q=0 to 3) is:

•
$$ps_output_q[128u + v] = \begin{cases} ps[q, \lfloor u/96 \rfloor] & v = 0 \\ 0 & v = 1 \\ ps_input_q[126u + v - 2] & v = 2 \text{ to } 128 \end{cases}$$


 In the receive direction, the pilot sequence bits are used to synchronize the frame to determine the BCH decoder boundaries and initialize the convolutional de-interleavers. These symbols are removed prior to BCH deinterleaver function.

Pictorial Description of pilots within the DP-QAM16 symbols


PMA Sublayer Transmit Path


- Encode 4 FEC output lanes into 1 optical signal lane
- DP-QAM16 (Dual-polarization QAM16)
 mapper is used to map the four bit lanes
 received from the FEC sublayer through the
 PMA:IS_UNITDATA.request primitives into
 four lanes of 4-level signals used to modulate
 the XI/XQ/YI/YQ of optical signal
- Signal driver function includes all the electrooptical processing required to convert the mapper output into an optical signal
- Details of the mapper function is provided in subsequent slide. Optical specifications required to implement the signal driver function will be covered in subsequent contributions.

PMA Sublayer Receive Path

- Decode the optical signal received at the PMD into 4 output lanes provided through the PMA:IS_SIGNAL.indication and PMA:IS_UNITDATA_0:3.indication primitives
- The coherent receiver implements all functions required to convert the optical signal into into four lanes of 4-level signals
- The DP-QAM16 demapper function converts four lanes of 4-level signals into four bit sequences provided to the FEC sublayer through the PMA:IS_UNITDATA_0:3.indication primitives
- Details of the demapper function is provided in subsequent slide. Optical specifications required to implement the coherent receiver will be covered in subsequent contributions.

DP-QAM16 mapper/demapper Functions

- Purpose: Convert the bit sequences at the PMA service interface to and from four lanes of four-level signals which modulate the XI/XQ/YI/YQ optical signal at the PMD
- Prerequisites: Maintain 2-bit alignment to the functions in the FEC sublayer
- In the transmit direction, the DP-QAM16 mapper function maps the bits received on four PMA lanes through the PMA:IS_UNITDATA_0:3.request primitives and maps them to output lanes output_0:3
 - Denote the index of the PMAL as p (p=0 to 3), where the bits for the pth lane are obtained through PMA:IS_UNITDATA_p.request
 - Denote the index of the aligned input 2-bit block across the PCSLs as i and the bit index within block i as j(j=0 to 1). The 2-bit boundaries are maintained through the processing in the FEC sublayer.
 - The mapping between the bit sequences on the PMAL and the output_p is:
 - $output_p[i] = 4 * (PMAL[p, 2i]) + 2 * (PMAL[p, 2i]^PMAL[p, 2i + 1]) 3$
- In the receive direction, the DP-QAM16 demapper function maps the four signals extracted from the XI/XQ/YI/YQ of the optical signal on input lanes input 0:3 to four bit lanes and provides this data through the PMA:IS_UNITDATA_0:3.indication primitives. The demapper implements the inverse of the DP-QAM16 mapper function.

Summary

- This proposal provides a complete logic baseline (FEC and PMA) for single-wavelength 800G coherent interfaces using an inner FEC
- The details were provided previously in <u>maniloff 3dj 01a 2305</u>. The description has been updated to follow the document structure and conventions in this task force (for e.g. <u>ran 3dj 01a 2303</u>, <u>nicholl 3dj 01a 2305</u>)
- The proposal provides a low complexity, low power, low latency solution for coherent interfaces without sacrificing performance
- The proposal leverages many aspects of similar proposals for the IMDD objectives in this task force (see patents 3dj 01b 2303)