Towards 800GBASE-LR1/ER1 PHY Baseline Decisions

Kishore Kota – Marvell Tom Williams – Cisco

P802.3dj Plenary Meeting, Berlin, Germany, July 2023

Supporters

- Vasu Parthasarathy, Broadcom
 Kumi Omori, NEC
- Haojie Wang, China Mobile
- Weiqiang Cheng, China Mobile
 Yann Loussouarn, Orange
- Ray Nering, Cisco
- Gary Nicholl, Cisco
- Mike Sluyski, Clsco
- Tomoo Takahara, Fujitsu
- Xue Wang, H3C
- Yu Zhu, Hengtong Group
- Ted Sprague, Infinera
- Jeff Maki, Juniper

- Erwan Pincemin, Orange
- Zhan Su, Ruijie Networks
- Ryan Yu, SiFotonics
- Frank Chang, Source Photonics
 Lenin Patra
 Marvell
- Auster Chen, Spirent
- David Estes, Spirent
- Paul Brooks, Viavi
- Huijun Sha, Viavi
- Aihua Liu, ZTE

- Chengbin Wu, ZTE
- Chris Cole Quintessent
- Arash Farhood Marvell
- Ali Ghiasi Ghiasi Quantum
- Charles Park Juniper
- Atul Strivastava NEL
- Samuel Liu Marvell
- Bo Zhang Marvell
- Vipul Bhatt Coherent
- Roberto Rhodes Coherent

Introduction

- Two key decisions for 800GBASE-LR1 and ER1 to select a baseline
 - Frame/FEC scheme
 - Wavelength plan

Pros and cons of the Frame/FEC choices

- kota 3dj 01b 0723 provided a logic baseline to address 800GBASE-LR1/ER1 objective using a concatenated KP4+BCH inner FEC architecture
 - + Lightweight, low complexity, low-power, low-latency frame and FEC
 - + Enables both type-3 and type-2 modules
 - Requires new DSP developments to fully benefit from these advantages
- <u>nicholl 3dj 02 2307</u> provided a logic baseline to address 800GBASE-LR1/ER1 objective using OFEC
 - + Leveraging existing 800ZR industry investments
 - Higher power, complexity and latency

Pros and cons of the wavelength choices

- C-band (~ 1550nm)
 - + All coherent investment to-date is in this band
 - + Optical amplification technology is more mature
 - + Lower fiber loss is beneficial especially for 40km objective
 - Higher chromatic dispersion blocks many DSP optimizations
- O-band (~ 1310nm)
 - + Low chromatic dispersion enables lower power DSP architectures
 - Optical amplification technology is not as mature

What makes sense for 800GBASE-LR1?

- Frame/FEC choice
 - Type-2 modules enabled using an inner-FEC architecture provide clear benefits to end-users
- Wavelength choice
 - O-band enables lower complexity designs which benefit the LR application

What makes sense for 800GBASE-ER1?

- Wavelength choice
 - C-band is a clear frontrunner for the 40km application because of maturity of optical amplification technology
- Frame/FEC choice
 - Given the low volumes of this application, it could benefit from leveraging 800ZR development

Proposed Resolution

- Use O-Band and inner code for 800GBASE-LR1 PHY
 - Logic baseline from kota 3dj 01b 2307
 - Optical baseline from maniloff 3dj 01 2307 (slides 7-10)

- Use C-Band and OFEC for 800GBASE-ER1 PHY
 - Logic baseline from <u>nicholl 3dj 02 2307</u>
 - Optical baseline from williams 3dj 01a 2305 (slides 7-10)