Next Steps for COM (Channel Operating Margin)

Richard Mellitz, Samtec Kent Lusted, Intel Matt Brown, Alphawave Semi July, 2023

IEEE P802.3dj Task Force

Supporters & Contributors

Adam Healey, Broadcom

- □ Ayal Shoval, Synopsys
- Chris DiMinico, M C Communications, LLC
- Geoff Zhang, AMD
- Howard Heck, Intel
- Jason Chan, Arista
- □ John Calvin, Keysight
- Jim Weaver, Arista
- Liav Ben Artsi Marvell
- Megha Shanbhag, TE
- Mike Dudek, Marvell
- □ Wingrove, Mike, Ciena
- Michael Klempa, Alphawave Semi
- Nathan Tracy, TE
- Pavel, Zivny Tektronix
- **D** PR Li, MediaTek
- Priyank Shukla, Synopsys

IEEE P802.3dj Task Force

- Ralph Page, Samtec
- □ Rick Rabinovich, Keysight
- □ Sakai Toshiaki, Socionext
- □ Samuel Kocsis, Amphenol
- Tom Palkert, Samtec & Macom
- □ Tony Chan Carusone, , Alphawave Semi
- Upen Reddy Kareti, Cisco
- Valery Kugel, Juniper

Contributors

- □ Adam Healey, Broadcom
- Adee Ran, Cisco

Preface

□ Review COM and Pulse Responses

□ COM Reference Model with Rx_{FFE}ⁱ

□ Discussion for Rx_{FFE} in Annex 93A (COM)

□ Optimization of Rx_{FFE}

□ Straw poll

^{*i*}Rx_{FFE} – Receiver Feed Forward Equalizer

- Numerous presentations (healey_3dj_01_2305, shakiba_3dj_01_230223, etc) discuss using MLSEⁱⁱ with COM
- A common theme was that the use of MLSE in COM requires the addition a Rx_{FFE}
- \Box Inclusion of Rx_{FFE} into COM is a <u>first</u> step for specifying MLSE for COM
- □ This contribution will focus on these first steps for the RX_{FFE}
 - More details on the RX_{FFE} implementation, assumptions, configuration, etc will be provided in the near future

^{*ii}</sup>MLSE – Maximum Likelihood Sequence Estimation*</sup>

High level Review of COM

THE RELATION BETWEEN COM AND PULSE RESPONSES (ANNEX 93A)

- COM (Channel Operating Margin) is computed from equalized pulse responses
 - And other parameters
 - Derived from differential channel s-parameters

 \Box Thru (ISI) channel response is $h^{(0)}(t)$ i.e., the pulse response, PR

- The pulse response $h^{(k)}(t)$ is derived from the voltage transfer function $H^{(k)}(f)$ (see 93A.1.4) using Equation (93A-24)
 - $h^{(k)}(t) = \int_{-\infty}^{\infty} X(f) H^{(k)}(f) \exp(j2\pi ft) dt$ (93A-24)
 - Where: $X(f) = A_t T_b sinc(fT_b)$, Tb = 1/fb and A_t is a path transmitter amplitude

Example COM Reference Model with RX_{FFE}

FOR CONSIDERATION

IEEE P802.3dj Task Force

Key Changes for Rx_{FFE} in Annex 93A (COM)

□ Consider an update to the COM reference model, figure 93A-1

• See slide 6

- \Box Provide for implementation noise, η_1
- □ Include another term, $H_{rxffe}(f)$, the receiver FFE response, into the voltage transfer function, $H^{(k)}(f)$
 - $H^{(k)}(f) = Hffe(f) H_t(f) H_{21}^{(k)}(f) Hr(f) Hctf(f) H_{rxffe}(f)$
- Provide a receiver equalizer description like the transmitter equalizer in sub-section 93A.1.4.2.
- Reuse the specified COM FOM for the determination of the variable equalizer parameters settings

An Optimization of Rx_{FFF}

- \Box Consider including σ_{N1} in FOM equation (93A-36)
 - $FOM = 10 \log 10 \left(\frac{A_s^2}{\sigma_{TX}^2 + \sigma_{ISI}^2 + \sigma_I^2 + \sigma_{XT}^2 + \sigma_N^2 + \sigma_{N1}^2} \right)$
 - This represents an aggregate of additional noise due to ADC and DSP •
 - Proposals are in development and forthcoming soon
- □ Compute the pulse response $h_{(0)}^{(k)}(t)$ of signal path k for a given c(-3), c(-2), c(-1), c(1), g_{DC} , and g_{DC2} using the procedure defined in 93A.1.5.

 - If Rx_{ffe} is not called out in the referring section, *H_{rxffe}(f) = 1*If Rx_{ffe} is called out in the referring section, FOM is computed using *h*^(k)(*t*)
 - While refining the sample point (t_s) between $\pm \frac{T_b}{2}$
 - For a specified number or pre and post cursor taps
 - Discussion and review are needed

Summary

Several changes to COM are needed to support the RX_{FFE} functionality

- □ An example reference model for consideration was provided
- □ Reviewed the key changes for COM to use an RX_{FFE}
 - Providing a path forward to MLSE
- Optimization steps, including the sample point, will be brought forward soon

Thank You!

IEEE P802.3dj Task Force

Straw Poll

I would support the direction of the RXFFE changes to Annex 93A (COM) on slides 6, 7, and 8

- a) Yes
- b) No
- c) NMI
- d) Abstain