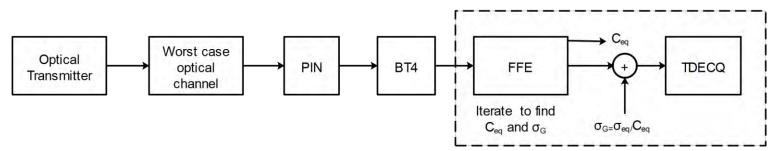
TDECQ metric based on FFE+MLSE

Nebojsa Stojanovic, Maxim Kuschnerov, Youxi Lin Huawei Technologies


July 2023

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force

Need for IMDD advanced equalization

- Advanced IMDD DSP is a prerequisite for a larger coverage of electrical and optical use cases at 100G and 200G per lane
- Advanced equalization is already being implemented for 100G SerDes and 200G optical PHYs
- FFE+MLSE has been proven superior for a variety of PAM4 use cases
 - ✓ 800G LR4 (better CD & PMD tolerance)
 - ✓ 100G **backplane** (improved insertion loss)
 - ✓ 100G & 200G linear drive optics (improved electrical insertion loss, CD, PMD)
 - ✓ 100G & 200G **CPO** (better CD & PMD tolerance)
- MLSE can be implemented with low complexity as reduced state sequence detector
- However, there is a lack of a transmitter quality metric for a FFE+MLSE receiver

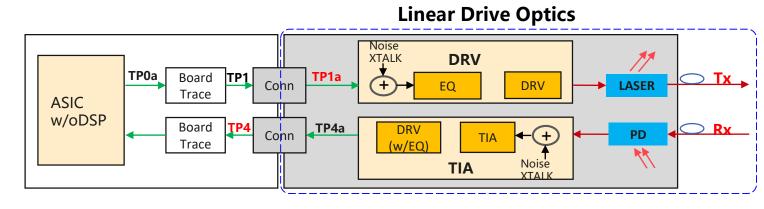
Recap: Classical TDECQ definition

- A generic optical interconnect where a pattern is sent from an optical transmitter through a worst case optical channel to a test point is shown in Fig. 1 [IEEE Standard for Ethernet, IEEE Std. 802.3, 2018.].
- A TDECQ tester is connected to the test point. It consists of a reference receiver and a TDECQ algorithm
- The reference receiver converts the received optical signal to an electrical signal and filters it by a fourth order Bessel-Thomson (BT4) filter
- The TDECQ algorithm finds an optimal 5-tap feed-forward equalizer (FFE), given BT4 shaped receiver noise.
- The algorithm connected to the reference receiver finds the largest input referred receiver noise, $\sigma_{\rm G}$, that causes a SER equal to the target (TSER) of 4.8 × 10⁻⁴ (KP4 FEC limit at 100G/lane PAM4)

TDECQ under discussion for 200G/lane PAM4

Longer FFE

- For 200G PAM4 electrical and optical devices could be more bandwidth limited and have higher Xtalk and noise (<u>rodes_3dj_01_2305</u>)
- Due to increasing symbol rate, similar effects (e.g. reflections) might have an increasing inter-symbol interference (ISI)
- A 17-tap reference FFE equalizer was proposed in rodes 3dj 02b 2305
- At least 11 taps seemed viable in <u>mi_3dj_01_2305</u> for the 800G FR4


FFE+MLSE

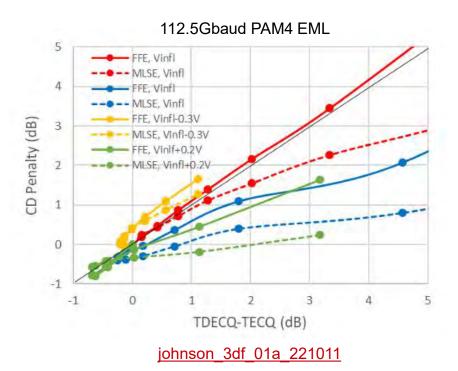
- It was shown that a FFE+MLSE receiver has a higher CD and PMD tolerance for 200G/lane PAM4
- This can be relevant for the 800G LR4 PMD <u>kuschnerov_3df_01b_221012</u>, <u>kuschnerov_3df_02a_221012</u>

Advanced receiver implications at 100G/lane PAM4

Linear Drive Optics & CPO

 MLSE becomes a required subcomponent for 100G/lane SerDes to compensate for bandwidth limitations of the electrical channel

- Recently, linear drive optics were proposed using the LR SerDes IO to drive the electrical trace and the optical pluggable jointly
- Thus, direct drive (CPO) or linear drive applications (pluggable) based on 100G/lane might inherently use advanced FFE+MLSE receivers
- Viterbi algorithm (MLSE or MAP) generally can be used as hard decision or soft output


 \rightarrow It is desired to have an advanced TDECQ metric for potential future use and standards

800G LR4: Need for a TDECQ metric update

- Overview of chirp & CD tolerance for 200G PAM4 is presented in johnson_3df_01a_221011
- FFE-based TDECQ overestimates the CD penalty for the MLSE based receiver
- The proposed LAN-WDM grid for 800G LR4 requires a CD tolerance from -28ps/nm:9.2ps/nm

TDECQ options for 800G LR4

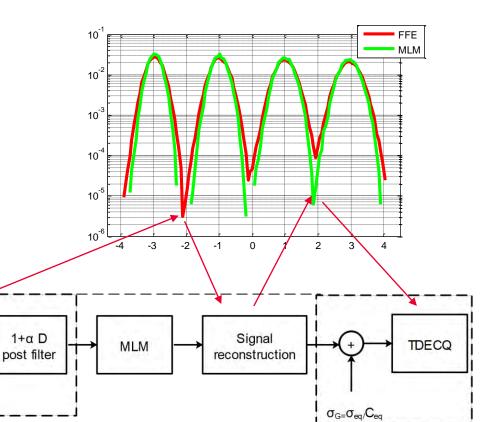
- 1. Updated testing methodology with a limited ZDW range for testing (1305-1319nm) <u>cole_3dj_01b_2305</u>
- 2. Advanced TDECQ based on FFE+MLSE (this presentation)

TDECQ based on **MLSE**

- A novel transmitter quality metric was developed for the FFE+MLSE receiver
- It includes the baseline system (ending with FFE) extended by a 2-tap post filter (1+αD), simplified MAP algorithm called MaxLogMAP (MLM), a signal reconstruction block, and TDECQ calculation
- The TDECQ calculation is almost identical to the FFE-based TDECQ calculation. The noise deviation (σ) search is applied to find sigma value that gives SER=TSER (target SER).

PIN

BT4

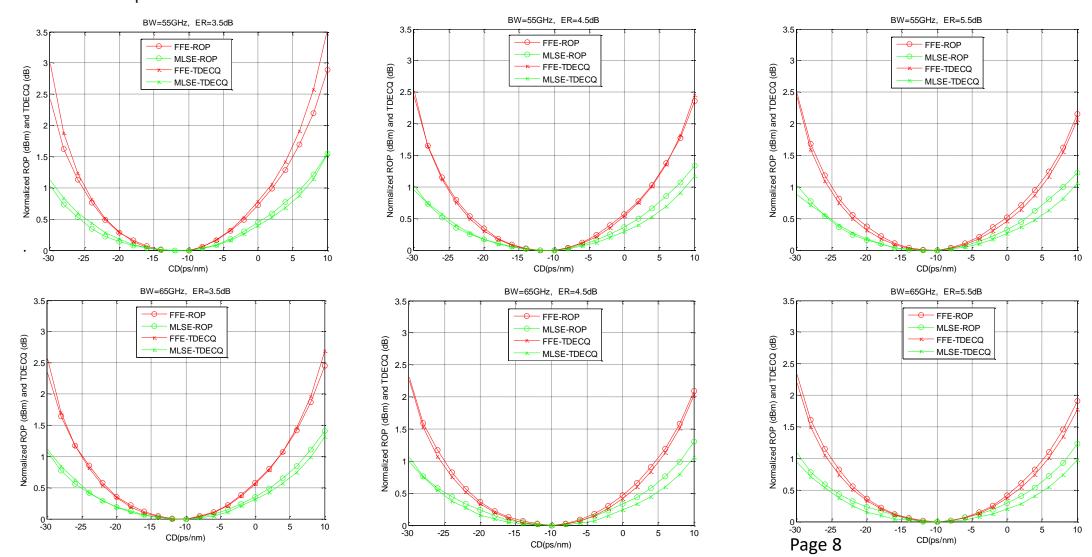

Worst case

optical

channel

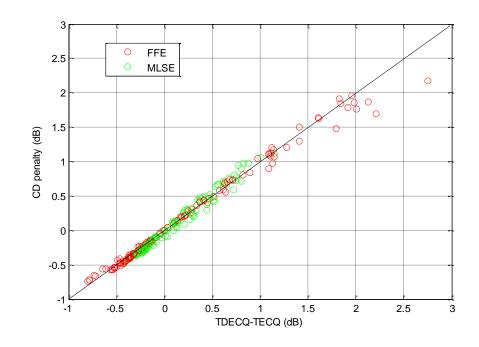
Optical

Transmitter



FFE

Iterate to find C_{eq} , σ_{G} , and α


TDECQ metric comparison: FFE vs. FFE+MLSE

112Gbaud PAM4 TSER = 2*4.95e-3, 15-tap FFE ER and components bandwidth varied

TDECQ estimation error

- TDECQ estimation at Pin=0dBm
- Maximum FFE TDECQ estimation error ~ 0.58 dB
- Maximum MLSE TDECQ estimation error 0.18 dB

Conclusions

- The performance of a precise TDECQ metric based on the FFE+MLSE receiver was presented for 200G PAM4
- The method can be applied to both hard decision and soft output MLSE, PAMx modulation formats and MLSE with various tap numbers
- It can cover higher tolerances with respect to CD, PMD, low pass filtering for various use cases (800G LR4, linear drive optics, CPO) which are likely to use MLSE
- Approach can have broader appeal to other SDOs (e.g. OIF)
- 800G LR4 TDECQ can be implemented using either option:
 - ✓ FFE based TDECQ with reduced ZDW range for testing based on a statistical channel model / segmentation of the link using CD_Q
 - ✓ FFE+MLSE based TDECQ metric based on classical channel model
- New TDECQ metric can be provided to interested 3rd parties for a broader test coverage and evaluation

Thank you.