Effect of AUI error propagation on optical error rate for $200 \mathrm{~Gb} / \mathrm{s}$ lanes.
802.3dj Sept Interim 2023

Mike Dudek
Marvell

Introduction

- A DER of 2.67e-5 was adopted for the AUl's at each end of the link with the following vote in the interim meeting in May 2023
- adopt a DERO value of 2.67e-5 (equivalent to measured BER of $4 \mathrm{e}-5$ with precoding ON) as the total allocation for higher-loss AUls within a PHY (BER division between C2C and C2M as well as the measurement method to be determined later.
- The effect of this and methods for specifying the optical link have been studied in the below presentations assuming the DER creates random errors
- Specifying BER in PMD clauses (ieee.org) (RAN_3dj_optx_01_230815)
- AUI error rate specifications (ieee.org) (RAN_3dj_01_230817)
- This presentation explores the effect of error propagation on the link performance.

Assumptions

- The link performance (Frame Loss Ratio) is set by the number of errored FEC symbols within FEC codewords.
- With the adopted Symbol muxing PMA each FEC symbol contains 5 consecutive PAM4 symbols.
- The FEC symbols are distributed within a codeword such that the minimum "distance" between FEC symbols from the same codeword is 3 (i.e. every $4^{\text {th }}$ FEC symbol is from the same codeword.
- A worst case DFE error propagation model with $\mathrm{a}=0.75$ is assumed.
- Pre-coding will result in one PAM4 symbol error at the original error and one PAM4 symbol error at the end of the burst.
- Random errors produce one errored FEC symbol.

Analysis with pre-coding.

- With 5 PAM4 symbols in each FEC symbol there is a 20% probability of the first error being in each position within the FEC symbol and the probability of the error propagating into another FEC symbol is shown in the table below.

$\begin{array}{l}\text { Position within } \\ \text { FEC symbol }\end{array}$	$\begin{array}{c}\text { Probability of error propagating to } \\ \text { another FEC symbol with pre-coding }\end{array}$	
	1	$0.75^{\wedge} 4$

- The probability of the FEC symbol this propagates to being in the same codeword 3 words later is $0.75^{\wedge} 15-0.75^{\wedge} 20=0.010$. This gives a probability that there will be a second FEC symbol errors in the same codeword of 2.67e-7 which is much smaller than the 2.8e-3 probability of errors in any FEC symbol that the RS544,514 code can stand.

Analysis without pre-coding.

- The probability of the error propagating into a second FEC symbol is shown in the table below.

Probability of error propagating to 2nd

Position within FEC symbol		FEC symbol without pre-coding.	
	1	$0.75^{\wedge} 5$	0.237
	2	$0.75^{\wedge} 4$	0.316
	3	$0.75^{\wedge} 3$	0.422
	4	$0.75^{\wedge} 2$	0.563
	5	0.75	0.750
Average probability of 2 or more FEC symbol errors		0.458	

- The burst does not stop at the second FEC symbol however. The probability of there being 3 FEC symbol errors is $0.458^{*} 0.75^{\wedge} 5$. The probability of there being 4 FEC symbol errors is $0.458^{\star}\left(0.75^{\wedge} 5\right)^{\wedge} 2$. etc. i.e. average error probability $=0.458^{*}\left(1+0.75^{\wedge} 5+\left(0.75^{\wedge} 5\right)^{\wedge} 2+\left(0.75^{\wedge} 5\right)^{\wedge} 3 \ldots.\right)=0.458^{*}(1 /(1-$ $0.75^{\wedge} 5$) $=0.600$
- There is again a probability of there being multiple FEC symbol errors in the same codeword but again it is not that significant with the probability of there being 5 codewords in error being $0.458^{*} 00.75^{\wedge} 95=6.2 \mathrm{e}-13$.

Simulation confirmation.

- These results are confirmed with the simulations in
https://www.ieee802.org/3/dj/public/adhoc/electrical/23 0420/ran 3dj elec 01 230420.pdf where slide 10 is reproduced below.

Effect of precoding with 4-CW interleaving

- The blue curves are showing the effect of this error extension and also showing that the results with and without pre-coding are similar.

Conclusion.

- The suggestions on slide 8 of Specifying BER in PMD clauses (ieee.org) (RAN_3dj_optx_01_230815) for the allowed optical segment error performance is optimistic.
- We need to use a "BER budget" for the optical link of 2.8e-4 - 4x1.6e-5 equals $2.16 \mathrm{e}-4$ (instead of $2.4 \mathrm{e}-4$) or alternatively specify that with additional random BER of $6.4 \mathrm{e}-5$ (1.6*(4e-5)) (from other segments in a full link), the errors shall enable FLR lower than 6.2e-11.
- If this is not done then we need to revisit the value of DER0 allocated to the AUls or somehow limit the error propagation factor.

