# Considerations for the choice of $\eta_0$

Adam Healey Broadcom Inc. IEEE P802.3dj Task Force September 2023 (r0)

# Introduction

- The Channel Operating Margin (COM) calculation includes two terms that allocate margin for practical receiver implementations
  - 1. Input-referred noise spectral density  $\eta_0$
  - 2. Minimum COM value required for channel compliance
- There has been a lack of clarity about what  $\eta_0$  is intended to represent and this has led to challenges in choosing an appropriate value
- There has been no assessment of the minimum COM value to determine if it is sufficient to account for receiver impairments not addressed by  $\eta_0$
- This presentation is intended to start a *conversation* about these terms

# What should be considered in the value of $\eta_0$ ?

- Known sources of noise at the receiver input e.g., ...
- Thermal noise
- Receiver package near-end crosstalk (NEXT)
- Receiver package far-end crosstalk (FEXT)
- It could also include input-referred equivalents to likely sources of noise internal to the receiver
- More about this later...

#### **Receiver package near-end crosstalk**

Transmitter

Device

Near-end aggressor

Channel NEXT is included in the channel measurements input to COM.

Receiver package NEXT should be accounted for in the COM reference package model.

 $R_d$ 

#### Package PSNEXT model (example) -30 $PSNEXT = 30 \log_{10}(f / 53.1 \text{ GHz}) - 50$ -35 -40 -45 Pulse amplitude A<sub>ne</sub> dB Unit interval 1 / f<sub>b</sub> -50 Magnitude, -50 dB at 53.1 GHz Transition -55 -60 -65 Input chosen randomly from L-level alphabet -70 -75



time filter

#### A side note about transmitter and aggressor rise times

The device model has an s21 characteristic and hence an intrinsic rise time.

The rise time at the "bump" is the combination of this intrinsic rise time and the impact of the transition time filter.



#### Interim summary of the components of input-referred noise



| Component     | Spectral density, V <sup>2</sup> /GHz |
|---------------|---------------------------------------|
| Thermal       | 2e-9                                  |
| Package NEXT  | 3.6e-9                                |
| Package FEXT  | f.f.s.                                |
| Other, margin | f.f.s.                                |
| Total         | > 5.6e-9                              |

An  $\eta_0$  value of 4e–9 or 5e–9 V<sup>2</sup>/GHz is not sufficient to represent all of the input-referred noise sources that practical receivers will need to tolerate.

(a) "PSNEXT equivalent" is the flat input spectral density that produces the same PSNEXT RMS voltage at the receiver noise filter output.

(b) The thermal noise spectral density is  $4k_BTR$  where  $k_B$  is the Boltzmann constant, T is (125C + 273.15) K, and R is  $2R_d = 90 \Omega$  (matching the COM configuration spreadsheet).

# What impairments can the minimum COM allocation cover?



- Likely sources of noise internal to the receiver e.g., ...
- Amplifier (gain, continuous-time equalization) output-referred noise
- Amplifier distortion
- Analog-to-digital converter (ADC) effective number of bits (ENOB)
- Sampling time jitter
- Certain noise sources may be better modeled by an additional receiver noise term, or referred to the receiver input, due to scaling with loss

#### Some test cases for a receiver impairment study

| # | Die-die IL, dB | Source                                                                              |
|---|----------------|-------------------------------------------------------------------------------------|
| 1 | 23.5           | mellitz_3dj_03_elec_230504, C2C_withXtalk_Mezz_1_PCB-25mm_25mm_*                    |
| 2 | 32.7           | mellitz_3dj_02_elec_230504, KRCA_wXTALK_MX_4_PCB-25-25_mm_FO-200-200_mm_CA-200_mm_* |
| 3 | 40.5           | shanbhag_3dj_01_2305, CR_1mOSFPDAC_TP0TP5_25p9dB_PCBHost_4p9dB_*                    |

Normalize all of the test cases to COM = 3 dB by adding noise at the receiver FFE output.

| # | Rx   | Added noise for COM = 3 dB, mV RMS |  |  |  |
|---|------|------------------------------------|--|--|--|
| 1 | DFE  | 2.7                                |  |  |  |
| 2 | DFE  | 1                                  |  |  |  |
| 3 | MLSE | 0.4                                |  |  |  |



### **COM** implementation penalty due to ADC ENOB



| # | Rx   | Minimum ENOB for COM > 0 dB |  |  |  |  |
|---|------|-----------------------------|--|--|--|--|
| 1 | DFE  | 5.2                         |  |  |  |  |
| 2 | DFE  | 5.8                         |  |  |  |  |
| 3 | MLSE | 5.6                         |  |  |  |  |

| # | Rx   | COM penalty for ENOB = 6, dB |  |  |  |  |
|---|------|------------------------------|--|--|--|--|
| 1 | DFE  | 1.3                          |  |  |  |  |
| 2 | DFE  | 2.5                          |  |  |  |  |
| 3 | MLSE | 1.9                          |  |  |  |  |

This one receiver impairment consumes the bulk of the 3 dB implementation allowance.

What about the other impairments?

NOTE – ENOB is modeled as a flat spectral density at the input to the receiver FFE. It can be equated to low-frequency ENOB since it does not include degradation at higher frequency due to jitter. This also means that the jitter impairment is <u>not included</u> in this estimate of the COM penalty. COM penalty calculation assumes 90% loading of the ADC input.

# Other consideration for the minimum COM allocation



- Differences between reference equalizer and practical implementation e.g., limited number of taps, finite precision arithmetic
- Imprecise performance predictions due to use of approximations
- Optimistic performance predictions due to idealized models

# Summary and next steps

- Commonly-used values for  $\eta_0$  do not appear to be large enough to account for the most likely sources for receiver input-referred noise
- Certain receiver impairments can be expected to scale with channel loss
- A fixed allocation for these impairments e.g., a minimum COM, may be too generous for low-loss channels and insufficient for high-loss channels
- More explicit accounting of these impairments using new or existing noise terms is needed
- This presentation is intended to start a *conversation*
- The desired outcome of that conversation is consensus on what the noise terms represent and values for those noise terms that enable reasonable implementations to comply with the standard
- The minimum COM allocation may then need to be revisited based on the consensus noise definitions

# **Back-up materials**

### COM configuration spreadsheet, 1 of 2

|             | Table 93A-1 parameters                      |         |                | I/O control        |                      |         | Table 93A–3 parameters  |                                 |         |                     |
|-------------|---------------------------------------------|---------|----------------|--------------------|----------------------|---------|-------------------------|---------------------------------|---------|---------------------|
| Parameter   | Setting                                     | Units   | Information    | DIAGNOSTICS        | 1                    | logical | Parameter               | Setting                         | Units   | Information         |
| f_b         | 106.25                                      | GBd     |                | DISPLAY_WINDOW     | 1                    | logical | package_tl_gamma0_a1_a2 | 2 [0 0.0008455 0.000340225]     |         |                     |
| f_min       | 0.05                                        | GHz     |                | CSV_REPORT         | 0                    | logical | package_tl_tau          | 0.00644805                      | ns/mm   |                     |
| Delta_f     | 0.01                                        | GHz     |                | RESULT_DIR         | esults\CACR_set1_{da | ite}\   | package_Z_c             | [92 92 ; 70 70; 80 80; 100 100] | Ohm     |                     |
| C_d         | [0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4] | nF      | [TX RX]        | SAVE_FIGURES       | 0                    | logical | z_p select              | 2                               |         | [test cases to run] |
| L_s         | [0, 13 0, 15 0, 14; 0, 13 0, 15 0, 14 ]     | nH      | [TX RX]        | Port Order         | [1324]               |         | z_p (TX)                | [6 31; 1 1; 1 1; 0.5 0.5 ]      | mm      | [test cases]        |
| С_Ь         | [0.3e-4 0.3e-4]                             | nF      | [TX RX]        | RUNTAG             | KR_set1_eval_        |         | z_p (NEXT)              | [829;11;11;0.50.5]              | mm      | [test cases]        |
| R_0         | 50                                          | Ohm     |                | COM_CONTRIBUTION   | 1                    | logical | z_p (FEXT)              | [6 31; 1 1; 1 1; 0.5 0.5 ]      | mm      | [test cases]        |
| R_d         | [4545]                                      | Ohm     | [TX RX]        |                    |                      |         | z_p (RX)                | [829;11;11;0.50.5]              | mm      | [test cases]        |
| A_v         | 0.386                                       | V       | vp/vf=         | TDR and E          | RL options           |         | C_p                     | [0.5e-4 0.5e-4]                 | nF      | [TX RX]             |
| A_fe        | 0.386                                       | V       | vp/vf=         | TDR                | 1                    | logical |                         |                                 |         |                     |
| A_ne        | 0.6                                         | V       |                | ERL                | 1                    | logical |                         | Filter: Rx FF                   | FE      |                     |
| L           | 4                                           |         |                | ERL_ONLY           | 0                    | ns      | ffe_pre_tap_len         | 6                               | U       |                     |
| М           | 32                                          |         |                | TR_TDR             | 0.01                 |         | ffe_post_tap_len        | 60                              | U       |                     |
|             | filter and Eq                               |         |                | N                  | 4000                 | logical | ffe_tap_step_size       | 0                               |         |                     |
| f_r         | 0.58                                        | *fb     |                | TDR_Butterworth    | 1                    |         | ffe_main_cursor_min     | 0.7                             |         |                     |
| c(0)        | 0.55                                        |         | min            | beta_x             | 0                    |         | ffe_pre_tap1_max        | 0.7                             |         |                     |
| o(-1)       | [-0.4:0.02:0]                               |         | [min:step:max] | rho_x              | 0.618                |         | ffe_post_tap1_max       | 0.7                             |         |                     |
| o(-2)       | [ 0:.02:0.1 ]                               |         | [min:step:max] | TDR_W_TXPKG        | 0                    | UI      | ffe_tapn_max            | 0.7                             |         |                     |
| o(-3)       | 0                                           |         | [min:step:max] | N_bx               | 20                   |         |                         |                                 |         |                     |
| o(-4)       | 0                                           |         | [min:step:max] | fixture delay time | [00]                 |         |                         | Operational                     |         |                     |
| c(1)        | [-0.2:0.05:0]                               |         | [min:step:max] | Tukey_Window       | 1                    |         | ERL Pass threshold      | 10                              | dB      |                     |
| N_b         | 1                                           | UI      |                | Noise, jitt        | er                   | UI      | COM Pass threshold      | 3                               | db      |                     |
| b_max(1)    | 0.75                                        |         | As/dffe1       | sigma_RJ           | 0.01                 | UI      | DER_0                   | 1.00E-04                        |         |                     |
| b_max(2N_b) | 0.3                                         |         | As/dfe2N_b     | A_DD               | 0.02                 | V^2/GHz | T_r                     | 0.00400                         | ns      |                     |
| b_min(1)    | 0                                           |         | As/dffe1       | eta_0              | 4.00E-09             | dB      | FORCE_TR                | 1                               | logical |                     |
| b_min(2N_b) | -0.15                                       | S       | As/dfe2N_b     | SNR_TX             | 33                   |         | PMD_type                | C2C                             |         |                     |
| g_DC        | [-15:1:-3]                                  | dB      | [min:step:max] | R_LM               | 0.95                 |         | EW                      | 1                               |         |                     |
| f_z         | 25.16                                       | GHz     |                |                    |                      |         | MLSE                    | 0                               | logical |                     |
| f_p1        | 40.00                                       | GHz     |                |                    |                      |         | ts_anchor               | 1                               |         |                     |
| f_p2        | 56.00                                       | GHz     |                |                    |                      |         | sample_adjustment       | [-32 32 ]                       |         |                     |
| g_DC_HP     | [-5:1:0]                                    |         | [min:step:max] |                    |                      |         | Local Search            | 2                               |         |                     |
| f_HP_PZ     | 1.328125                                    | GHz     |                |                    |                      |         |                         |                                 |         |                     |
| Butterworth | 1                                           | logical | include in fr  |                    |                      |         |                         |                                 |         |                     |

NOTE – This configuration was used exclusively for the purpose of producing the examples shown in this presentation. It is not a proposal for COM parameter values.

# COM configuration spreadsheet, 2 of 2

| SAVE_CONFIG2MAT                                                                | 0                                                                                            |                                                                   |  |  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|
|                                                                                | Receiver testing                                                                             |                                                                   |  |  |
| RX_CALIBRATION                                                                 | 0                                                                                            | logical                                                           |  |  |
| Sigma BBN step                                                                 | 5.00E-03                                                                                     | V                                                                 |  |  |
|                                                                                | ICN parameters                                                                               | •                                                                 |  |  |
| f_v                                                                            | 0.278                                                                                        | Fb                                                                |  |  |
| f_f                                                                            | 0.278                                                                                        | Fb                                                                |  |  |
| f_n                                                                            | 0.278                                                                                        | Fb                                                                |  |  |
| f_2                                                                            | 61.625                                                                                       | GHz                                                               |  |  |
| A_ft                                                                           | 0.450                                                                                        | V                                                                 |  |  |
| A_nt                                                                           | 0.450                                                                                        | V                                                                 |  |  |
|                                                                                |                                                                                              |                                                                   |  |  |
| Parameter                                                                      | Setting                                                                                      |                                                                   |  |  |
| pard_tl_gamma0_a1_a2                                                           | [0.6.44084e-4_3.6036e-05]                                                                    | 1.4 db/in @ 53.125G                                               |  |  |
| board_tl_tau                                                                   | 5.790E-03                                                                                    | ns/mm                                                             |  |  |
| board_Z_c                                                                      | 100                                                                                          | Ohm                                                               |  |  |
| z_bp (TX)                                                                      | 32                                                                                           | mm                                                                |  |  |
| z_bp (NEXT)                                                                    | 32                                                                                           | mm                                                                |  |  |
| z_bp (FEXT)                                                                    | 32                                                                                           | mm                                                                |  |  |
|                                                                                |                                                                                              |                                                                   |  |  |
| z_bp (RX)                                                                      | 32                                                                                           | mm                                                                |  |  |
| z_bp (RX)<br>C_0                                                               | 32<br>[0.2e-4 0]                                                                             | mm<br>nF                                                          |  |  |
| z_bp (RX)<br>C_0<br>C_1                                                        | 32<br>[0.2e-4 0]<br>[0.2e-4 0]                                                               | mm<br>nF<br>nF                                                    |  |  |
| z_bp (RX)<br>C_0<br>C_1<br>Include PCB                                         | 32<br>[0.2e-4 0]<br>[0.2e-4 0]<br>0                                                          | mm<br>nF<br>nF<br>logical                                         |  |  |
| z_bp (RX)<br>C_0<br>C_1<br>Include PCB<br>Seletions (                          | <u>32</u><br>[0.2e-4 0]<br>[0.2e-4 0]<br><b>0</b><br>rectangle, gaussian,dual_ra             | mm<br>nF<br>nF<br>logical<br>ayleigh,triangle                     |  |  |
| z_bp (RX)<br>C_0<br>C_1<br>Include PCB<br>Seletions (<br>stogram_Window_Weight | <u>32</u><br>[0.2e-4 0]<br>[0.2e-4 0]<br><b>0</b><br>rectangle, gaussian,dual_r.<br>gaussian | mm<br>nF<br><b>NF</b><br>logical<br>ayleigh,triangle<br>selection |  |  |

| N_bg                            | N_bg 0 012 or 3 groups |                                 |    |                       |
|---------------------------------|------------------------|---------------------------------|----|-----------------------|
| N_bf                            | N_bf 4 taps per group  |                                 |    |                       |
| N_f                             | 80                     | UI span for floating taps       |    | benartsi_3df_01a_2211 |
| bmaxg                           | 0.2                    | max DFE value for floating taps |    | mli_3df_02_220316     |
| B_float_RSS_MAX                 | 0.1                    | rss tail tap limit              |    |                       |
| N_tail_start 25 (UI) start of t |                        | (UI) start of tail taps lim     | it |                       |

NOTE – This configuration was used exclusively for the purpose of producing the examples shown in this presentation. It is not a proposal for COM parameter values.