Baseline proposal for chip-to-module attachment unit interface (AUI-C2M) at 200 Gb/s per lane

Adee Ran, Cisco
Kent Lusted, Intel
Matt Brown, Alphawave Semi
Howard Heck, Intel
Tobey P.-R. Li, MediaTek
Preface

• AUI-C2M is a high priority electrical specification in P802.3dj
 • Likely the first one that the market will widely adopt
• A lot of work has been done in this area
• Not all details are in consensus at this time
 • But there are general assumptions on the technology and components of the solution
• We can start forming a baseline proposal
 • A baseline and initial drafts can include TBDs
Outline

• AUI-C2M will be specified in an annex that multiple PHY/PMD clauses can refer to.
 • Not having a number yet, it is referred to in this presentation as Annex 999X.
• The structure of this annex is expected to be based on existing AUI-C2M annexes, such as 120G, with some modifications.
• The major subclauses are:
 1. Overview, including a general error rate specification (BER or other)
 2. Channel model (including recommended insertion loss)
 3. Compliance point definitions
 4. Electrical characteristics: host/module, output/input
 5. Measurement methodology
 6. PICS
• Details on each subclause are included in the following slides.
999X.1 Overview

• General introductory text
• Architectural diagram (as in Figure 120G-1), including usage within a PHY and within an xGMII Extender
• Composition of a C2M link, with a pointer to 999X.2 (channel model subclause)
• Nominal signaling rate 106.25 GBd, PAM4 modulation
• Adjustable output equalization and differential swing, with method TBD
 • AKA “Link Training”, expected to be defined in another annex
• Error rate specifications
 • Based on a BER allocation assuming uncorrelated errors (see ran_3dj_01_230817)
 • For AUI-C2M within a PHY: TBD (options: 1e-5 / 2e-5 / conditional on having a C2C in the PHY)
 • For AUI-C2M within an xGMII Extender: TBD (options: 1.29e-4 / 2.58e-4 / conditional on having a C2C in the Extender)
 • Allowance of additional errors from other segments for each case
 • Measurement method and limits TBD (may refer to a general Annex that would explain BER allocation).
999X.2 Channel model

• Channel model figure with all losses TBD
 • Text stating that host and module losses in the figure include packages

• Channel insertion loss (recommended)
 • Text, equation and figure based on 120G.4

• COM reference model (new) TBD
 • Includes reference transmitter and receiver for assumed capabilities
 • Same as those used for normative input/output requirements that include reference Tx/Rx
999X.3 Compliance point definitions

• Similar to 120G.2
• Reference to channel model in 999X.5
• HCB/MCB characteristics (similar to 120G.5.4)
 • Previously another annex with detailed HCB/MCB/MTF specifications was pointed to (e.g., Annex 162B)
 • Baseline for that annex should be adopted separately (and independently of a possible CR clause)
999X.4 Electrical characteristics: host/module, output/input

- **Host and Module output:**
 - All existing specifications in 120G, with the following exceptions:
 - Signaling rate value 106.25 GBd ±50 ppm (for 400GAUI-2 and 200GAUI-1, applies only for a PMA in the same package as the PCS)
 - Transition time (min) value TBD
 - Steady-state voltage (max) defined with equalization off, value TBD
 - VEC and EH replaced by output parameters TBD (see “Measurement methodology”)
 - Limits based on error allocation
 - ERL TBD
 - Details, equations, figures

- **Host and Module input:**
 - All existing specifications in 120G, with the following exceptions:
 - Signaling rate value 106.25 GBd
 - ±100 ppm for 400GAUI-2 and 200GAUI-1, ±50 ppm otherwise
 - Stressed input tolerance
 - Setup diagrams, jitter profile are similar to 120G
 - Calibration procedure and parameters TBD due to adjustable equalization
 - Limits based on error allocation
 - ERL TBD
 - Details, equations, figures
999X.4 Measurement methodology

• To be decided

• Likely alternatives for output specifications:
 A. Based on 120G: EH and VEC
 B. Based on 120F: Output waveform, SNDR, R_{LM}, SNR_{ISI}, Output jitter

• For input specifications, method of calibrating stressed signal will be based on the output specification
Summary

• A proposed structure and content of an AUI-C2M annex was presented.

• Significant areas to be decided are
 • Error allocation
 • Adjustable output equalization/swing method (aka link training)
 • Methodology, with consideration of adjustable output
 • Some parameter values

• These gaps could be filled after D1.0 is generated.
That’s all

Questions? Discussion?