Optical Specifications for Different FEC Modes at 200G/L -Methodology

Brian Welch (Cisco)

Piers Dawe (Nvidia)

Zvi Rechtman (Nvidia)

Overview

- Several Ad-Hoc contributions have sought clarification on the means of defining optical specifications to support operation with and without inner code FEC.
 - dambrosia 3dj optx 01b 230815.pdf
 - dambrosia 3dj optx 01a 230829.pdf
- The intent of this presentation is to provide clarification where possible, and to propose definitions and methodologies to satisfy both FEC directions.

Clarification 1: Use of the term bypass

- The term "bypass" was used to indicate that the goal of the RS(544,514) only operating modes was used to supplement, but not replace, the goal of operating with an additional inner FEC.
- The proposal for this and future presentations is to instead use the following definitions:
 - Mode_FECo: Optical link runs with RS(544,514) FEC protection.
 - Mode_FECi: Optical link runs with RS(544,514) FEC protection operating as an outer code, supplemented by Hamming(128,120) FEC protection operating as an inner code.
- This should avoid confusion with prior 802.3 uses of the word "bypass".

Clarification 2: Standardization of Different FEC Modes

- Optical specifications could be codified in 802.3 in two ways:
 - As a common PMD/PHY specification defining operation for both FEC modes
 - As separate PMD/PHY specifications for each FEC mode
- Both modes were presented/discussed in <u>welch 3dj 04a 2307.pdf</u>, however no recommendation was made at that time.
 - It is understood that the "separate PMD/PHY" approach would require new objectives, whereas the "common PMD/PHY" approach would not.
- Depending on the option pursued, specifications to support interoperability between the two modes may be required.
 - Example: Auto-Detection vs. Auto-Negotiation

Clarification 3: Market Acceptance

- **Question:** Will the market accept a single PHY dual mode approach?
- **Answer:** Yes. End users may place their own restrictions on optics purchases to ensure a specific mode of operation, however such behaviors are common today.
 - EX: It is typical for customers to ask for better than spec compliance on transmitter performance (OMA, TDECQ) or receiver performance (SRS, BER) than the standards require.
 - This is much more common than creating fundamentally new specs to support their needs
- Note: End users likely will not want to reduce reach to enable operation without an inner FEC
 - Even today users frequently use higher loss PMD/PHY types for shorter reaches, to maintain a common PMD/PHY type across their installation.
 - Reach is also a small contributor of loss budget in 500m and 2km SMF infrastructures

Clarification 4: Identification

- **Question:** How will users identify "lower latency" PHYs?
 - Assuming the standard does not differentiate.
- **Answer:** This can be achieved various ways, including:
 - Through having specific purchasing requirements, met with specific product datasheets ensuring "lower latency" compliance.
 - Through EEPROM advertising/status bits, as are commonly used today to indicate optical module performance.
- Note: Many things not explicit in IEEE PMD/PHY nomenclature but critical to market acceptance must be identified in optical modules:
 - EX: Form Factor, Power, Optical Connector, Memory Map
 - Other IEEE standards (100GBASE-ZR) also require additional identification beyond PMD/PHY name (ie, to accommodate different wavelengths).

Clarification 5: Optical Transmitters

- Question: Will all future optical transmitters meet TxA requirements (i.e. no inner FEC necessary)
- Answer: It is unknown if all future optical transmitters will meet the requirement, and if so when. Experience at 100G/L suggest that considerable technology improvement is possible over the first 2-3 years of production, although that does not guarantee such evolution at 200G/L.

Clarification 6: Low Latency PHY

- Question: Will an optimized low latency only PHY (no inner FEC) be desired?
- Answer: As was indicated in clarification 3, end users (especially in web-scale deployments) may implement their own restrictions against an 802.3 spec to guarantee low latency PHY performance where needed. Having a separate PHY type may make this easier (and more universal among consumers) but is not considered to be necessary.

Optical Spec Methodologies

Optical Spec Methodologies – Two Approaches

- **Common Optical Spec:** Common spec defining both KP4 FEC only operation and KP4+InnerFEC operation.
- Separate Optical Specs: Separate PMDs, one for KP4 only operation and another for KP4+InnerFec operation.

Common Optical Specification

Common spec/PMD defining both KP4 FEC only operation and KP4+InnerFEC operation

Common Optical Specification

- Transmitter is allowed to comply to either Mode_FECo or Mode_FECi operating condition
- Receiver is required to comply to both Mode_FECo and Mode_FECi operation conditions

Proposed Transmitter Specifications

Description	n00GBASE-nR4		Unit
	Mode_FECo	Mode_FECi	-
ignaling rate, each lane (range)	106.25 ± 50 ppm	113.4375 ± 50 ppm	GBd
Aodulation Format	РА	PAM4	
ane wavelengths (range)	Value		nm
ide-mode suppression ratio (SMSR), (min)	Value		dB
verage launch power, each lane (max)	Value		dBm
verage launch power, each lane (min)	Value		dBm
Outer Optical Modulation Amplitude (OMA _{outer}), each lane(max)	Value		dBm
Outer Optical Modulation Amplitude (OMA _{outer}), each lane(min)			
for TDECQ < 1.4 dB	Value		dBm
for 1.4 dB \leq TDECQ \leq TDECQ (max)	Value		dBm
ransmitter and dispersion eye closure (TDECQ), each lane (max)	Value	Value	dB
ECQ (max)	Value	Value	dB
TDECQ - TECQ (max)	Value	Value	dB
verage launch power of OFF transmitter, each lane (max)	Va	Value	
xtinction ratio, each lane, (min)	Value		dB
ransmitter transition time (max)	Value		ps
ransmitter over/under-shoot (max)	Value		%
IN _x OMA (max)	Value		dB/Hz
ptical return loss tolerance (max)	Value		dB
ransmitter reflectance (max)	Value		dB

Proposed Receiver Specifications

Description	n00GB	n00GBASE-nR4	
	Mode_FECo	Mode_FECi	
Signaling rate, each lane (range)	106.25 ± 50 ppm	113.4375 ± 50 ppm	GBd
Modulation Format	P	PAM4	
Lane wavelengths (range)	Ve	Value	
Damage threshold, each lane	Ve	Value	
Average receive power, each lane (max)	Ve	Value	
Average receive power, each lane (min)	Ve	Value	
Receive power, each lane (OMA _{outer}) (max)	Ve	Value	
Receiver reflectance (max)	Ve	Value	
Receiver sensitivity (OMA _{outer}), each lane (max)			
for TECQ < 1.4 dB	Ve	Value	
for 1.4 dB \leq TECQ \leq SECQ	Ve	Value	
Stressed receiver sensitivity (OMA _{outer}), each lane (max)	Value	Value	dBm
Conditions of stressed receiver sensitivity test:			
SECQ	Value	Value	dB
OMA _{outer} of each aggressor lane ^c	Ve	Value	

Proposed Link Budget

Description	n00GBASE-nR4		Unit
	Mode_FECo	Mode_FECi	
Power budget (for max TDECQ)	Value	Value	dB
Operating distance	Value		m
Channel insertion loss	Value		dB
Maximum discrete reflectance	Value		dB
Allocation for penalties (for max TDECQ)	Value	Value	dB
Additional insertion loss allowed	Value		dB

Separate Optical Specifications

Separate PMDs, one for KP4 only operation and another for KP4+InnerFec operation

Separate Optical Specifications

- Distinct PMD/PHY specifications for Mode_FECo and Mode_FECi
 - Each with unique transmitter, receiver, and link specifications
- No IEEE requirement for interoperability between the two
 - Ie, Mode_FECi receiver does not have to interoperate with Mode_FECo transmitters.
 - Informative interoperability specs may still be advantageous
- Note: This isn't a nomenclature presentation. As such "mode" designations are presently being used in the case of separate PMD/PHYs to avoid confusion.

Proposed Transmitter Specifications

Description	n00GBA	n00GBASE-nR4	
	Mode FECo	Mode_FECi	Unit
Signaling rate, each lane (range)	106.25 ± 50 ppm	113.4375 ± 50 ppm	GBd
Modulation Format	PAM4	PAM4	
Lane wavelengths (range)	Value	Value	nm
Side-mode suppression ratio (SMSR), (min)	Value	Value	dB
Average launch power, each lane (max)	Value	Value	dBm
Average launch power, each lane (min)	Value	Value	dBm
Outer Optical Modulation Amplitude (OMA _{outer}), each lane(max)	Value	Value	dBm
Outer Optical Modulation Amplitude (OMA _{outer}), each lane(min)			
for TDECQ < 1.4 dB	Value	Value	dBm
for 1.4 dB \leq TDECQ \leq TDECQ (max)	Value	Value	dBm
Transmitter and dispersion eye closure (TDECQ), each lane (max)	Value	Value	dB
TECQ (max)	Value	Value	dB
TDECQ - TECQ (max)	Value	Value	dB
Average launch power of OFF transmitter, each lane (max)	Value	Value	dBm
Extinction ratio, each lane, (min)	Value	Value	dB
Transmitter transition time (max)	Value	Value	ps
Transmitter over/under-shoot (max)	Value	Value	%
RIN _x OMA (max)	Value	Value	dB/Hz
Optical return loss tolerance (max)	Value	Value	dB
Transmitter reflectance (max)	Value	Value	dB

Proposed Receiver Specifications

Description	n00GB	n00GBASE-nR4	
	Mode_FECo	Mode_FECi	7
Signaling rate, each lane (range)	106.25 ± 50 ppm	113.4375 ± 50 ppm	GBd
Modulation Format	PAM4	PAM4	
Lane wavelengths (range)	Value	Value	nm
Damage threshold, each lane	Value	Value	dBm
Average receive power, each lane (max)	Value	Value	dBm
Average receive power, each lane (min)	Value	Value	dBm
Receive power, each lane (OMA _{outer}) (max)	Value	Value	dBm
Receiver reflectance (max)	Value	Value	dB
Receiver sensitivity (OMA _{outer}), each lane (max)			
for TECQ < 1.4 dB	Value	Value	dBm
for 1.4 dB \leq TECQ \leq SECQ	Value	Value	dBm
Stressed receiver sensitivity (OMA _{outer}), each lane (max)	Value	Value	dBm
Conditions of stressed receiver sensitivity test:			
SECQ	Value	Value	dB
OMA _{outer} of each aggressor lane ^c	Value	Value	dBm

Proposed Link Budget

Description	n00GBA	n00GBASE-nR4	
	Mode_FECo	Mode_FECi	
Power budget (for max TDECQ)	Value	Value	dB
Operating distance	Value	Value	m
Channel insertion loss	Value	Value	dB
Maximum discrete reflectance	Value	Value	dB
Allocation for penalties (for max TDECQ)	Value	Value	dB
Additional insertion loss allowed	Value	Value	dB

Summary

- Two options available for supporting different FEC modes:
 - Common Optical Specification: Single PMD/PHY
 - Separate Optical Specifications: Separate PMD/PHYs
- Either option acceptable to the market:
 - End users with FEC/Latency sensitivity may create restricted specs based on their specific needs.
- Biggest difference likely to be the need for adaptation spec for common PMD/PHY approach vs. the need for additional objectives for separate PMD/PHY approach