Benefits of Transmitter Adaptation for Optical Links

Ali Ghiasi – Ghiasi Quantum/Marvell
Matt Brown – Alphawave
Vasu Parthasarathy – Broadcom
Roberto Rodes – Coherent
Chris Cole – Quintessent
Mike Dudek – Marvell
Whay Lee – Marvell

IEEE 802.3dj Task Force
Plenary Meeting
Waikiki, HI

November 12, 2023
List of Contributors

- Matt Brown – Alphawave
- Adam Healey – Broadcom
- Vasu Parthasarathy – Broadcom
- Roberto Rodes – Coherent
- Ali Ghiasi – Ghiasi Quantum/ Marvell
- Kent Lusted – Intel
- Mike Dudek – Marvell
- Whay Lee – Marvell
- Chris Cole – Quintessent

List of Supporters

- David Cassan – Alphawave
- Henry Wong – Alphawave
- John Johnson – Broadcom
- Cedric Lam – Google
- Xiang Zhou – Google
- Arash Farhoodfar – Marvell
- Lenin Patra – Marvell
- Drew Guckenberger – Maxlinear
- Sridhar Ramesh – Maxlinear.
Overview

- **Benefits of optical link training**
 - Optimum transmit configuration providing improved BER
 - Energy efficiency

- **Why optics link training challenging**

- **Background on Ethernet link training**

- **Proposed optics link training**
 - Limited to preset initially but with ability to extend to full autonomous tuning

- **Optics link training process and flow**

- **Summary.**
Benefits of Optical Link Training

- **Benefits of adjusting pre-emphasis/boost**
 - Transmitter with large amount of pre-emphasis used with high BW receiver may result in clipping
 - Some transmitters that meet TDECQ may have excess boost at expense of sub-optimum receive BER
 - Slow transmitters with low distortion meeting TDECQ may benefit from extra boost used with low BW receivers

- **Increase ratio of outer/inner eyes**
 - MZM modulators have compression of outer eyes that may benefit from adjusting inner/outer eye
 - Receivers may have some compression that benefits from adjusting outer eyes
 - EA modulators can also take advantage of this with applied bias/signal are adjusted for EA non-linear response

- **OMA control**
 - Optical transmitters are designed to operate over maximum loss cable plant and launch condition
 - Reducing OMA increases energy efficiency
 - Reducing OMA may also mitigate overload and improve BER

- **Chirp and dispersion control**
 - Beneficial for >2 km links to mitigate dispersion penalty, most noticeably on outer wavelengths L0 and L3

- **An optical transmitter with the above preset controls more likely may operate with FECi bypassed and/or operate with lower transmit power.**
Pre-emphasis/overshoot can both improve and degrade the link BER

- Generally increasing overshoot (reducing Ceq) improves TDECQ
- In the example below overshoot resulted in error floor in the TIA

 ![Image](https://grouper.ieee.org/groups/802/3/cu/public/March20/rodes_3cu_01a_031720.pdf)

Achieving Robust Transmitter Compliance

Without Over-rejecting Transmitters

1. Low-OMA region
 - Pre-emphasis improves sensitivity. Negative Ceq improves transceiver yield. Use TDECQ for compliance.

2. Mid-OMA region
 - Overshoot can limit TIA linearity. Use a *relative overshoot limit for compliance.*

3. High-OMA region
 - To protect against overload, use an *absolute overshoot limit for compliance.*

Mid-OMA region: use overshoot for compliance

![Diagram](IEEE P802.3cu)

Why control relative overshoot?

Overshoot triggers TIA nonlinearities that limit Error floor

- Measured real Rx
- TIA THD simulation

Why do we think this is TIA related?
1. We can simulate a similar error bump with a simple logistic function (S-shaped) to model TIA saturation
2. Manual gain control of TIA eliminates the error bump

IEEE 802.3dj Task Force
Pre-Emphasis Generally Improves TDECQ

- But may result in overload and error floor as shown below for 802.3cu transmitters!

TDECQ vs Rx performance

- Overshoot tends to improve sensitivity. It saturates for values larger than 22%
- Overshoot values larger than 22% increase error floor significantly
TDECQ is not Always a Good Indicator of Link BER

- The 802.3db transmitters below TDECQ improves with increasing overshoot (decreasing Ceq), but for overshoot >~20% (~<1.1 dB) the link develops an error floor!
 - https://www.ieee802.org/3/db/public/September-09-September-29-2021/ghiasi_802.3db_01_092321.pdf
Potential Energy Efficiently

What is the potential for energy efficiency if OMA and CW is reduced by ½ with link training?

800G-FR4 links with semi-cooled EMLs
- EML with max Iop=120 mA, Vop(max)=1.9 V, operating from 3.3 V supply, min EA driver amplitude 1.25 V single ended into 50 Ω
 - Power saving due to CW reduction by ½ per DFB ~1 pJ/bit
 - Power saving due to CMOS driver swing reduction to keep constant ER ~0.2 pJ/bit
 - Power saving due to TEC heat load reduction ~2.25 pJ/bit (see the next page)
- Power saving with no TEC: ~1pJ/bit
- Power saving with TEC: ~3 pJ/bit

800G-DR4 link with Si MZM and one high power uncooled DFB CW source
- DFB with max Iop=300 mA, Vop(max)=1.9 V, operating from 3.3 V supply, min MZM drive amplitude 2.5 V Diff(p-p)
- Power saving due to CW reduction by ½ per 200G lane: ~0.6 pJ/bit
- Power saving due to non-CMOS driver swing reduction to keep constant ER: ~0.5 pJ/bit
- Power savings: ~1 pJ/bit
Reducing TEC Heat Load

- Semi-cooled EML at 50 °C with case temperature of 75 °C and max heat load for 4 DFB/EA (4x1.9V*0.12 A)=0.91 W but rounded to 1 W
 - Link to online TEC product and calculator
 https://tetech.com/peltier-thermoelectric-cooler-modules/micro/
 - TEC power consumption with DFB at max current 120 mA 0.8A*(2x1.5) V= 2.4 W
 - TEC power consumption with DFB at ½ the current 60 mA 0.4A*(2x0.75) V= 0.6 W
 - The TEC power saving by reducing DC light by ½ is 0.45 W/DFB or 2.25 pJ/bit!

1. Assumes TEC driver supply is 2x TEC voltage drop and supply voltage is reduced when thermal load is smaller thermal load.
Why Optical TX Link Training is Challenging

- Unlike CR/KR optical devices may require specific adjustment based on the device type
 - VCSEL/DML – asymmetrical turn-on/off
 - MZM – cosine compression – minor effect for IMDD applications
 - Electro-absorption (EA) – non-linear transfer response
 - Combination of chirp and dispersion on SMF - may create pulse compression

- Transmit FFE adjustment only provides linear frequency compensation
 - Proposed Optic-LT will not provide non-linear adjustments specific to different class of optics
 - Different presets may include aspect of non-linear compensation based on device type
 - But all presets must be known good setting that operate with the reference equalizer otherwise receiver may lose lock

- Optical link training may provide significant benefit for some optical PMDs
 - Need to quantify the benefit of optics training for the adopted SMF PMDs
 - Need to define the presets and the FFE tap ranges/step/weight for each of the optical PMDs.

Optics-LT – Ghiasi, et. al.
IEEE 802.3dj Task Force
For proposed optics AN, see Brown_3dj_01_2311

Optics LT leverages 802.3 CL 136/162 LT link to operating as point-point
 - Optics LT exchange is between the two modules
 - CL136/162 Control/status fields are transmitted with DME (Differential Manchester Encoding) at 1/8 the Baudrate followed by PRBS13Q as PAM4 training pattern
 - FECo DME control/status operates at 1/8 of 106.25 GBd (13.28 GBd) with training pattern at full rate
 - FECi DME control/status operates at 1/8 of 113.4375 GBd (14.18 GBd) with training pattern at full rate.

Figure 72-2—Training frame structure

Figure 136-3—Training frame structure
Leveraging CL136 Link Training for Optics-LT

- Training frame structure based on 136.8.11.1
- Training pattern and training PRBS pattern based on 136.8.11.1.3
- Control field structure and status field structure generally follows 162.8.11 with the difference captured in this contribution
 - If 802.3dj modifies KR/CR PMD control then will follow those changes when possible.

![Diagram](image.png)

Table 136–8—Training patterns

<table>
<thead>
<tr>
<th>p</th>
<th>Polynomial p, $G(x)$</th>
<th>Default seed bitsa</th>
<th>Initial output, PAM2</th>
<th>Initial output, PAM4</th>
<th>Initial output, PAM4 with precoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1 + x + x^2 + x^6 + x^{12} + x^{13}$</td>
<td>00000101010111</td>
<td>00303303300000</td>
<td>10313202201111b</td>
<td>1301200200101</td>
</tr>
<tr>
<td>1</td>
<td>$1 + x^2 + x^3 + x^7 + x^{13}$</td>
<td>0011101000001</td>
<td>3030303030333</td>
<td>3030213021333</td>
<td>3122012201212</td>
</tr>
<tr>
<td>2</td>
<td>$1 + x^2 + x^4 + x^8 + x^{13}$</td>
<td>1001000101100</td>
<td>0303333033030</td>
<td>1212323130331</td>
<td>1102120121301</td>
</tr>
<tr>
<td>3</td>
<td>$1 + x^2 + x^5 + x^9 + x^{13}$</td>
<td>0100010000010</td>
<td>3330300030330</td>
<td>2231210121221</td>
<td>2032013201110</td>
</tr>
</tbody>
</table>

IEEE 802.3dj Task Force
Proposed Optical Link Training

The link training leverages 802.3 CL136/162 for Optics-LT on a single point-point optical segment

- Proposal makes minor modification to CL136/162 to support Optics-LT by segmenting optical link in a similar manner to CR/KR point-point link with repeaters
- Electrical link training on AUIs are outside the scope of Optics LT
- Optics DME/training can be driven by recovered clock from the host or the module reference clock
- Link training proposal for currently proposed SMF PMDs is limited to presets only to mitigate any risk
 - Future PMDs may choose to extend the Optics LT to autonomous FFE adjustment.

Focus of this Contribution

Optics-LT – Ghiasi, et. al. IEEE 802.3dj Task Force
Proposed Optics Link Training Limited to Transmit Presets

- **Leverage CL162 control field Modulation-Precoder to enable pre-coder (see back up)**
- **Preset1** is the default setting that TDECQ must be met
 - Preset 2-10 are allowed 40% excursion above the TECQ/TDECQ limit to minimize additional testing
 - Preset 2-10 meeting a TDECQ with guard-band prevents misbehaving transmitters where CDR loses lock
- **Optics LT limited to presets and not full autonomous FFE tuning**
 - Potential proposed presets address BW limitation/over emphasis, compression, power, chirp/dispersion control
 - Preset1 – Default setting only needs to meet TDECQ
 - Preset2 - Increase pre-emphasis +7.5%
 - Preset3 - Decrease pre-emphasis -7.5%
 - Preset4 - Increase ratio of outer/inner eye Y%
 - Preset5 - Decrease ratio of outer/inner eye Y%
 - Preset6 – Positive CD
 - Preset7 – Negative CD
 - Preset8 – Decrease OMA by 1 dB
 - Preset9 – Decrease OMA by 2 dB
 - Preset10 - Decrease OMA by 3 dB.
 - Bandwidth compensation
 - Compression/non-linear compensation
 - To manage CD dispersion on 10 km links
 - Optical signal power control
Link Training Process

- Proposed link training for 802.3dj PMDs limited to presets (under study)
 - Presets are additive and are applied in sequential order Preset[2:10] unless skipped
 - Default preset only need to meet TDECQ limit
 - Preset [2:10] are allowed to have 40% excursion in TDECQ limit to minimize test time
 - Pre-emphasis, compression, and chirp/carrier frequencies are adjusted at constant average power
 - If the link has sufficient margin last step is to reduce OMA at constant ER to maximize the energy efficiency (decreases average power)
 - Need to devise a method for modules advertisement that don’t support all the presets
 - Given that optics presets are additive to better preserve CL162 training different type of controls (pre-emphasis, OMA, etc.) can be fitted to an FFE coefficient select

- How a fully autonomous link training may look like (under study)
 - Start with default preset conditions, including CW source power and FFE gain
 - Converge TX FFE coefficients based on far end error signal instead of utilizing preset 2/3
 - Go through compression presets and chirp preset (if applicable)
 - If the link has sufficient margin OMA is reduced at constant ER to maximize the energy efficiency
 - Fine tune TX FFE coefficients based on far end error signal.
Summary

- **Why task force should consider optical transmit adaption**
 - Optical transmitters are tuned with higher emphasis to get the best TDECQ, but for many links/receivers lower TDECQ not always equates with better link BER
 - Some of the transmitters with excess emphasis for the given link/receiver may have orders of magnitude worse BER
 - But a low BW link/receiver almost always will benefit from higher emphasis
 - Optics is consuming over 50% (~2000 W or 39 pJ/bit) of 51.2 Tb switch power and data centers operators are demanding better optics energy efficiency
 - Optical links are designed for maximum power launch condition into cable plants with maximum loss
 - Majority of optical links have excess optical power, which may degrade the BER
 - For SMF uncooled PMDs ~ 1pJ/bit and for cooled PMDs ~ 3 pJ/bit energy can be saved which is significant considering 102.4 Tb system

- **Assuming optical automatic link configuration for optics (AN), Brown_3dj_01_2311 is adopted the DME facility will exist to perform transmitter adaption for optical links**
 - Optics LT will leverage as much as possible proven Clause 136/162 training and flow

- **Consider this proposal as a work in progress for optical link adaption with feedback appreciated!**
CL 162 PMD Control Function (backup)

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:14</td>
<td>Reserved</td>
<td>Transmit as 0, ignore on receipt</td>
</tr>
<tr>
<td>13:11</td>
<td>Initial condition request</td>
<td>11 12 13 = Reserved 1 0 1 = Reserved 0 1 1 = Preset 5 0 0 1 = Preset 4 1 1 0 = Preset 3 1 0 0 = Preset 2 0 1 0 = Preset 1 0 0 0 = Individual coefficient control</td>
</tr>
<tr>
<td>10</td>
<td>Reserved</td>
<td>Transmit as 0, ignore on receipt</td>
</tr>
<tr>
<td>9:8</td>
<td>Modulation and precoding request</td>
<td>1 1 = PAM4 with precoding 1 0 = PAM4 0 1 = Reserved 0 0 = PAM2</td>
</tr>
<tr>
<td>7:5</td>
<td>Reserved</td>
<td>Transmit as 0, ignore on receipt</td>
</tr>
<tr>
<td>4:2</td>
<td>Coefficient select</td>
<td>4 3 2 = Reserved 1 0 0 = $c(1)$ 1 1 0 = $c(0)$ 1 1 1 = $c(1)$ 0 0 0 = $c(1)$ 0 0 1 = $c(1)$ 0 1 1 = $c(1)$ 0 1 0 = $c(1)$</td>
</tr>
<tr>
<td>1:0</td>
<td>Coefficient request</td>
<td>1 0 = No equalization 1 1 = Increment 0 1 = Decrement 0 0 = Hold</td>
</tr>
</tbody>
</table>

CL162 Presets are not additive and would require some modification to the CL136/162 to make the presets additive!

By leveraging coefficient select field instead for Pre-emphasis, compression, CD control, and OMA with 2 or 4 settings the effects are additive and existing CL136/162 training can be reused!
High Level Link Training Process (backup)

- **Electrical AUIs and optical segments are trained as point-point segments**
 - This approach simplifies electrical and optical link training and backward compatible 100G-AUIs
 - With AUI trained the optics LT starts with known good clock (same as clock mission mode)

- **Module data path is initialized**

- **Local AUI trained**
 - Wait till remote AUI trained
 - Completion of remote AUI status through Optics AN

- **Leverage CL 136/162 training as much as possible**
 - With caveat that the current proposal is limited to presets only with ability to expand as needed

- **After optics LT is completed the module through CMIS inform the host**
 - Host configure the module for mission mode.