Benefits of Transmitter Adaptation for Optical Links

Ali Ghiasi – Ghiasi Quantum/Marvell

Matt Brown – Alphawave

Vasu Parthasarathy – Broadcom

Roberto Rodes – Coherent

Chris Cole – Quintessent

Mike Dudek – Marvell

Whay Lee – Marvell

Plenary Meeting
Waikiki, HI

November 12, 2023

List of Contributors

- Matt Brown Alphawave
- Adam Healey Broadcom
- Vasu Parthasarathy Broadcom
- Roberto Rodes Coherent
- Ali Ghiasi Ghiasi Quantum/ Marvell
- Kent Lusted Intel
- Mike Dudek Marvell
- Whay Lee Marvell
- Chris Cole Quintessent

List of Supporters

- David Cassan Alphawave
- Henry Wong Alphawave
- John Johnson Broadcom
- Cedric Lam Google
- Xiang Zhou Google
- Arash Farhoodfar Marvell
- Lenin Patra Marvell
- Drew Guckenberger Maxlinear
- Sridhar Ramesh Maxlinear.

Overview

- Benefits of optical link training
 - Optimum transmit configuration providing improved BER
 - Energy efficiency
- Why optics link training challenging
- Background on Ethernet link training
- Proposed optics link training
 - Limited to preset initially but with ability to extend to full autonomous tuning
- Optics link training process and flow
- Summary.

Benefits of Optical Link Training

- Benefits of adjusting pre-emphasis/boost
 - Transmitter with large amount of pre-emphasis used with high BW receiver may result in clipping
 - Some transmitters that meet TDECQ may have excess boost at expense of sub-optimum receive BER
 - Slow transmitters with low distortion meeting TDECQ may benefit from extra boost used with low BW receivers
- ☐ Increase ratio of outer/inner eyes
 - MZM modulators have compression of outer eyes that may benefit from adjusting inner/outer eye
 - Receivers may have some compression that benefits from adjusting outer eyes
 - EA modulators can also take advantage of this with applied bias/signal are adjusted for EA non-linear response
- OMA control
 - Optical transmitters are designed to operate over maximum loss cable plant and launch condition
 - Reducing OMA increases energy efficiency
 - Reducing OMA may also mitigate overload and improve BER
- Chirp and dispersion control
 - Beneficial for >2 km links to mitigate dispersion penalty, most noticeably on outer wavelengths LO and L3
- An optical transmitter with the above preset controls more likely may operate with FECi bypassed and/or operate with lower transmit power.

Pre-emphasis/overshoot Impact on 400GBASE-FR4 Links

□ Pre-emphasis/overshoot can both improve and degrade the link BER

- Generally increasing overshoot (reducing Ceq) improves TDECQ
- In the example below overshoot resulted in error floor in the TIA
 - https://grouper.ieee.org/groups/802/3/cu/public/March20/rodes_3cu_01a_031720.pdf

Achieving Robust Transmitter Compliance

Mid-OMA region: use overshoot for compliance

Why control relative overshoot?

Overshoot triggers TIA nonlinearities that limit Error floor

IEEE P802.3cu 3

Optics-LT – Ghiasi, et. al. IEEE 802.3dj Task Force 5

Pre-Emphasis Generally Improves TDECQ

- But may result in overload and error floor as shown below for 802.3cu transmitters!
 - https://www.ieee802.org/3/cu/public/cu adhoc/cu archive/rodes 3cu adhoc 030520 v2.pdf
 - Background presentation https://www.ieee802.org/3/cu/public/Jan20/cole_3cu_01b_0120.pdf.

TDECQ vs Rx performance

☐ TDECQ vs Sensitivity shows good agreement with 1:1 linear fit

Overshoot vs Rx performance

Optics-LT – Ghiasi, et. al. IEEE 802.3dj Task Force 6

TDECQ is not Always a Good Indicator of Link BER

- □ The 802.3db transmitters below TDECQ improves with increasing overshoot (decreasing Ceq), but for overshoot >~20% (~<1.1 dB) the link develops an error floor!
 - https://www.ieee802.org/3/db/public/September-09-September-29-2021/ghiasi 802.3db 01 092321.pdf.

Potential Energy Efficiently

- What is the potential for energy efficiency if OMA and CW is reduced by ½ with link training?
- 800G-FR4 links with semi-cooled EMLs
 - EML with max lop=120 mA, Vop(max)=1.9 V, operating from 3.3 V supply, min EA driver amplitude 1.25 V single ended into 50 Ω
 - Power saving due to CW reduction by ½ per DFB ~1 pJ/bit
 - Power saving due to CMOS driver swing reduction to keep constant ER ~0.2 pJ/bit
 - Power saving due to TEC heat load reduction ~2.25 pJ/bit (see the next page)
 - Power saving with no TEC: ~1pJ/bit
 - Power saving with TEC: ~3 pJ/bit
- 800G-DR4 link with Si MZM and one high power uncooled DFB CW source
 - DFB with max lop=300 mA, Vop(max)=1.9 V, operating from 3.3 V supply, min MZM drive amplitude
 2.5 V Diff(p-p)
 - Power saving due to CW reduction by ½ per 200G lane: ~0.6 pJ/bit
 - Power saving due to non-CMOS driver swing reduction to keep constant ER: ~0.5 pJ/bit
 - Power savings: ~1 pJ/bit

Reducing TEC Heat Load

- Semi-cooled EML at 50 °C with case temperature of 75 °C and max heat load for 4 DFB/EA (4x1.9V*0.12 A)=0.91 W but rounded to 1 W
 - Link to online TEC product and calculator
 https://tetech.com/peltier-thermoelectric-cooler-modules/micro/
 - TEC power consummation with DFB at max current 120 mA $0.8A*(2x1.5)^1$ V= 2.4 W
 - TEC power consummation with DFB at ½ the current 60 mA 0.4A*(2x0.75)¹V= 0.6 W
 - The TEC power saving by reducing DC light by ½ is 0.45 W/DFB or 2.25 pJ/bit!

1. Assumes TEC driver supply is 2x TEC voltage drop and supply voltage is reduced when thermal load is smaller thermal load.

Why Optical TX Link Training is Challenging

- ☐ Unlike CR/KR optical devices may require specific adjustment based on the device type
 - VCSEL/DML asymmetrical turn-on/off
 - MZM cosine compression minor effect for IMDD applications
 - Electro-absorption (EA) non-linear transfer response
 - Combination of chirp and dispersion on SMF may create pulse compression
- Transmit FFE adjustment only provides linear frequency compensation
 - Proposed Optic-LT will not provide non-linear adjustments specific to different class of optics
 - Different presets may include aspect of non-linear compensation based on device type
 - But all presets must be known good setting that operate with the reference equalizer otherwise receiver may lose lock
- Optical link training may provide significant benefit for some optical PMDs
 - Need to quantify the benefit of optics training for the adopted SMF PMDs
 - Need to define the presets and the FFE tap ranges/step/weight for each of the optical PMDs.

Optics AN and Link Training

- For proposed optics AN, see Brown_3dj_01_2311
- Optics LT leverages 802.3 CL 136/162 LT link to operating as point-point
 - Optics LT exchange is between the two modules
 - CL136/162 Control/status fields are transmitted with DME (Differential Manchester Encoding) at 1/8 the Baudrate followed by PRBS13Q as PAM4 training pattern
 - FECo DME control/status operates at 1/8 of 106.25 GBd (13.28 GBd) with training pattern at full rate
 - FECi DME control/status operates at 1/8 of 113.4375 GBd (14.18 GBd) with training pattern at full rate.

Figure 136-3—Training frame structure

IEEE 802.3dj Task Force

Host B

Management

Leveraging CL136 Link Training for Optics-LT

- □ Training frame structure based on 136.8.11.1
- ☐ Training pattern and training PRBS pattern based on 136.8.11.1.3
- Control field structure and status field structure generally follows 162.8.11 with the difference captured in this contribution
 - If 802.3dj modifies KR/CR PMD control then will follow those changes when possible.

Figure 136-4—Training pattern generator

Table 136–8—Training patterns

	p	Polynomial_p, G(x)	Default seed bits ^a	Initial output, PAM2	Initial output, PAM4	Initial output, PAM4 with precoding
Г	0	$1 + x + x^2 + x^{12} + x^{13}$	0000010101011	0030330330000	1031320220111 ^b	1301200200101
	1	$1 + x^2 + x^3 + x^7 + x^{13}$	0011101000001	3030303030333	3030213021333	3122012201212
2	2	$1 + x^2 + x^4 + x^8 + x^{13}$	1001000101100	0303333033030	1212332133031	1102120121301
	3	$1 + x^2 + x^5 + x^9 + x^{13}$	0100010000010	3330300030330	2231210121221	2032013201110

12

Proposed Optical Link Training

- ☐ The link training leverages 802.3 CL136/162 for Optics-LT on a single point-point optical segment
 - Proposal makes minor modification to CL136/162 to support Optics-LT by segmenting optical link in a similar manner to CR/KR point-point link with repeaters
 - Electrical link training on AUIs are outside the scope of Optics LT
 - Optics DME/training can be driven by recovered clock from the host or the module reference clock
 - Link training proposal for currently proposed SMF PMDs is limited to presets only to mitigate any risk
 - Future PMDs may choose to extend the Optics LT to autonomous FFE adjustment.

Proposed Optics Link Training Limited to Transmit Presets

- Leverage CL162 control field Modulation-Precoder to enable pre-coder (see back up)
- Preset1 is the default setting that TDECQ must be met
 - Preset 2-10 are allowed 40% excursion above the TECQ/TDECQ limit to minimize additional testing
 - Preset 2-10 meeting a TDECQ with guard-band prevents misbehaving transmitters where CDR loses lock
- Optics LT limited to presets and not full autonomous FFE tuning
 - Potential proposed presets address BW limitation/over emphasis, compression, power, chirp/dispersion control
 - Preset1 Default setting only needs to meets TDECQ
 - Preset2 Increase pre-emphasis +7.5%
 - Preset3 Decrease pre-emphasis -7.5%
 - Preset4 Increase ratio of outer/inner eye Y%
 - Preset5 Decrease ratio of outer/inner eye Y%
 - Preset6 Positive CD
 - Preset7 Negative CD
 - Preset8 Decrease OMA by 1 dB
 - Preset9 Decrease OMA by 2 dB
 - Preset10 Decrease OMA by 3 dB.

Bandwidth compensation

Compression/non-linear compensation

To manage CD dispersion on 10 km links

Optical signal power control

Link Training Process

- Proposed link training for 802.3dj PMDs limited to presets (under study)
 - Presets are additive and are applied in sequential order Preset[2:10] unless skipped
 - Default preset only need to meet TDECQ limit
 - Preset [2:10] are allowed to have 40% excursion in TDECQ limit to minimize test time
 - Pre-emphasis, compression, and chirp/carrier frequencies are adjusted at constant average power
 - If the link has sufficient margin last step is to reduce OMA at constant ER to maximize the energy efficiency (decreases average power)
 - Need to devise a method for modules advertisement that don't support all the presets
 - Given that optics presets are additive to better preserve CL162 training different type of controls (preemphasis, OMA, etc.) can be fitted to an FFE coefficient select
- ☐ How a fully autonomous link training may look like (under study)
 - Start with default preset conditions, including CW source power and FFE gain
 - Converge TX FFE coefficients based on far end error signal instead of utilizing preset 2/3
 - Go through compression presets and chirp preset (if applicable)
 - If the link has sufficient margin OMA is reduced at constant ER to maximize the energy efficiency
 - Fine tune TX FFE coefficients based on far end error signal.

Summary

- **☐** Why task force should consider optical transmit adaption
 - Optical transmitters are tuned with higher-higher emphasis to get the best TDECQ, but for many links/receivers lower TDECQ not always equates with better link BER
 - Some of the transmitters with excess emphasis for the given link/receiver may have orders of magnitude worse BER
 - But a low BW link/receiver almost always will benefit from higher emphasis
 - Optics is consuming over 50% (~2000 W or 39 pJ/bit)of 51.2 Tb switch power and data centers
 operators are demanding better optics energy efficiency
 - Optical links are designed for maximum power launch condition into cable plants with maximum loss
 - Majority of optical links have excess optical power, which may degrade the BER
 - For SMF uncooled PMDs ~ 1pJ/bit and for cooled PMDs ~ 3 pJ/bit energy can be saved which is significant considering 102.4 Tb system
- Assuming optical automatic link configuration for optics (AN), Brown_3dj_01_2311 is adopted the DME facility will exist to perform transmitter adaption for optical links
 - Optics LT will leverage as much as possible proven Clause 136/162 training and flow
- Consider this proposal as a work in progress for optical link adaption with feedback appreciated!

CL 162 PMD Control Function (backup)

Table 162-9—Control field structure

Bit(s)	Name	Description
15:14	Reserved	Transmit as 0, ignore on receipt
13:11	Initial condition request	13 12 11 1
10	Reserved	Transmit as 0, ignore on receipt
9:8	Modulation and precoding request	9 8 1 1 = PAM4 with precoding 1 0 = PAM4 0 1 = Reserved 0 0 = PAM2
7:5	Reserved	Transmit as 0, ignore on receipt
4:2	Coefficient select	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$ \begin{array}{cccc} 0 & 0 & 0 & = c(0) \\ 0 & 0 & 1 & = c(1) \\ 0 & 1 & x & = Reserved \end{array} $
1:0	Coefficient request	1 0 1 1 = No equalization 1 0 = Decrement 0 1 = Increment 0 0 = Hold

CL162 Presets are not additive and would require some modification to the CL136/162 to make the presets additive!

By leveraging coefficient select field instead for Pre-emphasis, compression, CD control, and OMA with 2 or 4 settings the effects are additive and existing CL136/162 training can be reused!

High Level Link Training Process (backup)

- ☐ Electrical AUIs and optical segments are trained as point-point segments
 - This approach simplifies electrical and optical link training and backward compatible 100G-AUIs
 - With AUI trained the optics LT starts with known good clock (same as clock mission mode)
- Module data path is initialized
- Local AUI trained
 - Wait till remote AUI trained
 - Completion of remote AUI status through Optics AN
- ☐ Leverage CL 136/162 training as much as possible
 - With caveat that the current proposal is limited to presets only with ability to expand as needed
- ☐ After optics LT is completed the module through CMIS inform the host
 - Host configure the module for mission mode.