A Proposal for Updating Annex 93A. 1 Channel Operating Margin (COM) with a FFE Reference Receiver for IEEE P802.3dj

Mike Li, Hsinho Wu, Masashi Shimanouchi, Itamar Levin, Ariel Cohen, Ilia Radashkevich Intel

Nov, 2023

Supporters

- Richard Mellitz, Samtec

Background and Goals

- 802.3dj COM RX trending
- RX EQ will be equipped with CTLE, +long FFE, +short (1-tap) MLSD or DFE
- 802.3dj July plenary straw poll showed
- Strong interest to support FFE in COM reference RX
- Proposals for RX FFE (both fixed and floating) determination methodology and descriptions had been presented [1]
- Goals
- Propose specific RX FFE (both fixed and floating) coefficient determination methodology and descriptions for Annex 93A

Outline of Proposed Modifications to Annex 93A. 1

i. Update 93A. 1
a) Modify Figure 93A-1
b) Modify Table 93A-1
ii. Update 93A.1.4
a) Modify Eq. 93A-19
b) Add 93A.1.4.4 Receiver feed forward equalizer
iii. Update 93A.1.6
a) Adding RX FFE coefficient and floating tap location determination

i. a) Update 93A. 1 Channel Operating Margin

- Modify Figure 93A-1

i. b) Update 93A. 1 Channel Operating Margin

- Modify Table 93A-1 by adding the following COM parameters

Parameter	Reference	Symbol	Units
Receiver feed forward equalizer (RX FFE) pre-tap length	$93 \mathrm{A.1.6}$	ffe_pre_len	UI
RX FFE post-tap length	93 A .1 .6	ffe_post_len	UI
RX FFE coefficient limit	93 A .1 .6	ffen_max	
Number of RX FFE floating tap banks	$93 \mathrm{A.1.6}$	ffe_bg	UI
Number of RX FFE floating taps per bank	93 A .1 .6	ffe_bn	UI
RX FFE maximum span including FFE floating taps	93 A .1 .6	ffe_Nf	UI

ii a) and b) Update 93A.1.4 Filters

- Update 93A.1.4
- Modify Equation 93A-19

$$
H^{(k)}(f)=H_{f f e}(f) H_{t}(f) H_{21}(k)(f) H_{r}(f) H_{c t f}(f) H_{r x f f e}(f)
$$

- Modify description
- ... "the transmitter equalizer $H_{f f e}(f)$ is defined in 93A.1.4.2, the receiver equalizer $H_{c t f}(f)$ is defined in 93A.1.4.3, and the receiver feed forward equalizer $H_{r x f f e}(f)$ is defined in 93A.1.4.4."
- Add 93A.1.4.4 Receiver feed forward equalizer
- " $H_{r x f f e}(f)$ is defined by Equation (93A-23) and is intended to represent the receiver feed forward equalizer ($R X$ FFE) where pre_len is the pre-tap length of $R X$ FFE and post_len is the post-tap length of RX FFE. If the value of $c(i)$ is larger than the specified maximum values, the RX FFE coefficients are considered invalid and is not used to calculate COM."

$$
\begin{equation*}
H_{r x f f e}(f)=\sum_{i=-1 * p r e_{-} l e n}^{\text {post_len }} c(i) \exp \left(-j 2 \pi(i+\text { pre_len }) \frac{f}{f_{b}}\right) \tag{93A-23}
\end{equation*}
$$

iii Update 93A.1.6

- Modify 93A.1.6 Determination of variable equalizer parameters
- Currently in 802.3ck_D3p3
a) Compute the pulse response $h^{(k)}(t)$ of each signal path k for a given $c(-3), c(-2), c(-1), c(1), g_{\mathrm{DC}}$, and g_{DC} using the procedure defined in 93A.1.5.
b) Define t_{s} to be the time that satisfies Equation ($93 \mathrm{~A}-25$). If there are multiple values of t_{s} that satisfy the equation, then the first value prior to the peak of $h^{(0)}(t)$ is selected. The fixed-tap coefficients of

To be modified for use RX FFE option the decision feedback equalizerDFE $b(n)$ are computed as shown in Equation (93A-26). If N_{b} is 0 , then the $b(n)$ is considered to be zero for all n. If $b b_{\min }(n)$ and $b b_{\max }(n)$ are not provided by the clause that invokes this method then $b b_{\min }(n)$ is set to $-b_{\max }(n)$ and $\overline{b b_{\max }}(n)$ is set to b max (n).
c) Compute the location and coefficients of floating-tap coefficients of the DFE to minimize the residual ISI using the method described in 93A.1.6.1. If $N_{b g} N_{b \in} N_{f} b_{\max }$ are not specified then no floating taps are used and N_{f} takes the value of N_{b} from the referring clause.
d) e) Define A_{s} to be $R_{\mathrm{LM}} h^{(0)}\left(t_{s}\right) /(L-1)$.

iii Update 93A.1.6 (cont.)

- Update 93A.1.6 Determination of variable equalizer parameters step b) and c)
- b) If the receiver has feed forward equalizer (FFE), follow step b1) to b6). If no FFE, skip to step c)
- b1) Define ts to be the time that satisfies Equation (93A-25). If there are multiple values of ts that satisfy the equation, then the first value prior to the peak of $h^{(0)}(t)$ is selected. The partial response coefficient $p r=b(1) / h^{(0)}(t s)$ is computed as shown in Equation (93A-26). If $N b$ is 0 , then the $b(1)$ is considered to be zero. If $b b_{\min }(1)$ and $b b_{\text {max }}$ (1) are not provided by the clause that invokes this method then $b b_{\min }(1)$ is set to $-b_{\max }(1)$ and $b b_{\max }(1)$ is set to $b_{\max }(1)$.
- b2) Using the linear fitting (LF) method as in 85.8.3.3.5 and 85.8.3.3.6, compute FFE coefficients $w(n)$, where n is from -1^{*} ffe_pre_len to -1 and 0 to ffe_Nf, if FFE floating taps exist, or 0 to ffe_post_len, if no FFE floating tap, with the following conditions:
- Create $P\left(N w x\right.$ Nw matrix) from CTLE Output $h^{(0)}(t)$ where Nw is the number of FFE taps. Nw = ffe_pre_len + $1+f f e _N f$, if FFE floating taps exist, or Nw = ffe_pre_len + $1+f f e _p o s t _l e n, ~ i f ~ n o ~ F F E ~ f l o a t i n g ~ t a p . ~$
- Create x vector (Nw x1 vector) with:

》 $x\left(f f e _p r e _l e n+1\right)=1$
" $x\left(f f e _p o s t _l e n+2\right)=p r$
" All other components $=0$

- Normalize the resultant $w(n)$ so that $w\left(f f e _p r e _l e n+1\right)=1$. If $w(n)$ exceed ffen_max, FFE will not be used.
- b3) If FFE floating taps exist, compute pulse response $h_{f i x}^{(0)}(t)$ for the given transmitter equalizer coefficients $c(n), g_{D C}$ $g_{D C 2}$ and partial receiver FFE coefficients $w_{f i x}(n)=w\left(1: 1+f f e _p r e _t a p _l e n+f f e _p o s t _l e n\right)$ using the procedure defined in 93A.1.5.
- b4) if FFE floating taps exist, compute the location and coefficients of floating-tap coefficients of the FFE using $h_{f i x}{ }^{(0)}(t)$ to minimize the residual ISI using the method described in 93A.1.6.1. If ffe_bg, ffe_bf, ffe_Nf, ffe_bgmax are not specified then no floating taps are used and ffe_Nf takes the value of ffe_post_len from the referring clause. Update $w(n)$ so that not-selected floating tap locations are set to 0 .
- b5) Follow step b1) and re-compute ts using $h_{\text {new }}{ }^{(0)}(t)$ for the given transmitter equalizer coefficients $c(n), g_{D C} g_{D C 2^{2}}$ and receiver FFE coefficients $w(n)$.
- b6) Recompute $h^{(k)}(t)$ for the given transmitter equalizer coefficients $c(n), g_{D C} g_{D C 2}$, and receiver FFE coefficients $w(n)$.
iii Update 93A.1.6 (cont.)
- Update 93A.1.6 Determination of variable equalizer parameters
- c) is the original step b) as in 802.3 ck
- c1) is the original step c) as in 802.3ck

Summary and Next Steps

- Detailed/specific changes/updates for Annex 93A in supporting RX FFE (both fixed and floating) coefficient determination are presented.
- Expecting 802.3dj members review and adoption to enable the specification development.

References

[1] M. Li et al, https://www.ieee802.org/3/dj/public/23 09/lim 3dj 05 2309.pdf, Nov, 2023

