The Case for 36 dB C2M Insertion Loss at 200G

Pirooz Tooyserkani, Upen Reddy Kareti, Yi Tang

List of Supporters

- Samuel Kocsis, Amphenol
- Valery Kugel, Juniper Networks
- Brian Welch, Cisco Systems
- Nathan Tracy, TE Connectivity
- Megha Shanbhag, TE Connectivity
- Liav Ben-Artsi, Marvell
- Phil Sun, Credo
- Kapil Shrikhande, Marvell

Higher Bandwidth System Requirement

- $\mathrm{Al} / \mathrm{ML}$ is the driving force behind the push for higher bandwidth Ethernet Switch systems, hence next step is 200G/lane
- Advances in Silicon is now hitting 102.4T bandwidth doubling the current 51.2T switch capacity
- A 51.2T system is comprised of 512 SerDes with 64x 800GE front panel ports
- At 102.4T the radix stays the same but the speed doubles to $64 x 1.6 T$ per port
- Rack density for $\mathrm{Al} / \mathrm{ML}$ cluster is a strong market priority and maintaining 2 RU is a strong market need

2RU 64-port switch: A crucial application requiring optimal support

Building a 64 port 2RU Switch - options

- Single ASIC in a fixed box fanning out 512 SerDes to the front panel ports
- Option 1:
- Fully PCB routed (preferred due to cost) requires 36 dB C2M IL for 200G
- Option 2:
- Fully PCB routed up to 32 dB channels, cabled interfaces to remaining ports

64x1600G cages (e.g. QSFP-DD1600)

- VLC is not considered here due to rack density requirements (4RU minimum)

Retimers

- 102.4T Systems must be significantly better than $51.2 T$ system from thermal and power consumption perspective
- End-user overall power consumption limitations must be taken care of due to facility limitations and green initiatives
- Doubling the data rate limits the reaches using reasonably low-power SerDes architecture
- Thermal aspect of the design is becoming very difficult with respect to system cooling solutions and is also a burden on overall system power consumption - higher fan speed

- Use of retimers -

- Total system power consumption
- System thermals is negatively affected by addition of retimers
- Real estate - retimers require POLs, power filtering, heat sink and mounting holes which limits the PCB area usability

102.4T - Implementation design study

PCB Routed

Cabled Host

ASIC to connector $=3.5$,
Cable to Port = 14"

Hybrid PCB and Cabled Solution

- Supporting 32 dB channel loss requires a hybrid solution
- This means $2 / 3$ or 42 can be PCB routed and $1 / 3$ or 22 ports require cable
- However, the hybrid solution does come with the following issues that needs to be addressed:
- PCB Skew of P/N is fixed and does not vary much (temperature) after fabrication, but cable skew may vary from assembly to assembly due to bend/twist and temperature
- Assembly complexity is a disadvantage of cabled solutions

12 Ports Cabled
12 Ports Cabled

Challenges with Cabled Host

- At 100G with cabled ports, we see evidence that P/N skew is causing problems. At 200G we expect it to be much more severe
- Cable skew can occur during manufacturing (tolerance) or during installation of the cable (cable twist/bend) - It is important to limit cable skew to a reasonable value, including temperature impact and it is Important to limit the variability of cable skew for systems once deployed
- Skew leads to pulse shrinkage, increases insertion loss in the channel, and degrades the SNR
- The negative effects of P/N skew are currently observed in cabled hosts operating at 100 G per lane
- While the impact can be mitigated at 100 G , it is expected to worsen with the transition to 200G (Ul of 9.4ps)
- A more detailed explanation of the impact of skew will be provided in a future presentation

Cable Frequency Domain Measurements

- Performance of multiple cables was measured in the frequency domain under various realistic conditions
- Significant skews were detected in straight cables provided by multiple cable suppliers
- Skew intensifies when the cables are twisted or bent
- Increased insertion loss as a consequence of skew

Find Paths to Both Implementations

PCB Implementation: max 36 dB IL (manageable PCB routing skew)

Cabled/Hybrid Implementation: max 32 dB IL (with Undeterministic cable skew)

- Must support both PCB routed design, and cabled host systems
- 2×1 stacked connector design is needed for both cases
- Cabled ports are needed for flexibility in system design and implementation

36 dB Routed vs. 32 dB Cabled

- Complexity Comparison:

- Despite the challenge posed by a 36 dB C2M equalizer, its complexity maybe comparable to a 32 dB equalizer designed to handle high cable skew
- Additional Loss from Cable Skew:
- A 32 dB channel with cable skew incurs an effective additional insertion loss, necessitating the use of a $32+\mathrm{dB}$ equalizer to compensate for the loss and ensure the preservation of signal integrity
- Manageable Skew in PCB:
- Skew in PCB can be effectively managed, providing more predictable performance. In contrast, cabled solutions have more complicated skew mechanisms, which needs to be addressed
- Advantages of PCB Routed Front Panel:
- A PCB routed front panel offers several benefits, including lower cost, improved thermal performance, and reduced assembly complexity, when compared to a hybrid solution
- Advantages of Cabled Host:
- Cabled host provides lower loss compared to PCB routed board and reduced in route density (skew managed)

Find Paths to Both Implementations

The RX equalization capabilities required for both 36 dB PCB and 32 dB Cabled C 2 M channels are similar

Conclusions and next step

- A crucial application: 2RU 64 ports switch
- Ensuring consistent performance and supporting high-volume manufacturing is critical
- Economic, power and performance considerations require PCB routed solution
- Standardization shall support both PCB and cabled host implementations
- Call to action:
- Collective efforts to enable both PCB and cabled implementations
- Insertion loss: a minimum of 36 dB C2M, must be analyzed in tandem with power optimization
- Skew: study and establish the skew limit
- 2×1 stacked connector: meeting SI performance requirements

Table 93A-1 parameters			
Parameter	Setting	Units	Information
f_b	106.25	GBd	
$\mathrm{f}_{\mathrm{E} \text { min }}$	0.05	GHz	
Delta_f	0.01	GHz	
C_d	[0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4]	nF	[TXRX]
L_s	[0.130.15 0.14; 0.130.15 0.14]	nH	[TXRX]
c_b	[0.3e-4 0.3e-4]	nF	[TXRX]
2_p select	[12]		[test cases to run]
$2 _p(T X)$	111111111; 111111111111111111;	mm	[test cases]
2_p (NEXT)	0000000000000000;00000000000C	mm	[test cases]
2_p (FEXT)	111111111;11111111111111111;	mm	[test cases]
\underline{z} p (RX)	0000000000000000;00000000000C	mm	[test cases]
PKG__T_FFFE_preset	0		
C^p	[0.5e-4 0.5e-4]	nF	[TXRX]
R_0	50	Ohm	
R_d	[50 50]	Ohm	[TXRX]
A_v	0.5	v	vp/vf=
A_fe	0.5	v	vp/vf=
A_ne	0.5	v	
L	4		
M	32		
filter and Eq			
f_r	0.75	* ${ }^{\text {fb }}$	
c(0)	0.54		min
c(-1)	[-0.4:0.022:-0.3]	[-0.4:0.02:0]	[min:step:max]
cl-2)	[0:0.02:0.04]	[0:0.02:0.0.2]	[min:step:max]
cl-3)	[-0.04:00.02:0]	[-0.04:0.002:0]	[min:step:max]
c(-4)	[-0.02:00:02:0.04]	[0.02:0.002:0.02]	[min:step:max]
c(1)	[-0.04:0002:0.04]	-0.12:0.02:0.0.04	[min:step:max]
N_b	1	UI	
b_max(1)	1		As/dffe1
b_max(2..N-b)	[0.30.2**ones $(1,22)]$		As/dffe2...._b
b_min(1)	0		As/dffe1
b_min(2...N-b)	[-0.2-0.2**ones(1,22)]		As/dffe2.... ${ }^{\text {_ }}$ b
g_DC	[-20:1:0]	dB	[min:step:max]
$\mathrm{f}_{\text {_ }}$	42.5	GHz	
$\mathrm{f}_{\mathrm{p}} \mathrm{p} 1$	42.5	GHz	
$\mathrm{f}_{\text {_p } 2}$	106.25	GHz	
g_DC_HP	[-6:1:0]		[min:step:max]
f_HP_PZ	1.328125	GHz	
Butterworth	1	logical	include in fr
Raised_Cosine	0	logical	include in fr
RC_Start	6.70E +10	Hz	start freq for RCos
RC_end	7.97E +10	Hz	end freq for RCos
ffe_pre_tap_len	4	U	
ffe_post_tap_len	80	UI	
ffe_tap_step_size	0		
ffe_main_cursor_min	0		
ffe_pre_tap1_max	0.7		
ffe_post_tap1_max	0.7		
ffe_tapn_max	0.7		
ffe_backoff	0		
Sample adjustment	[00]	phase	
ts_anchor	0		

Values of parameters in the highlighted fields are being assessed.

Thank you!

