### Benefits of Transmitter Adaptation for Optical Links

Ali Ghiasi – Ghiasi Quantum/Marvell Matt Brown – Alphawave Vasu Parthasarathy – Broadcom Roberto Rodes – Coherent Chris Cole – Quintessent Mike Dudek – Marvell Whay Lee – Marvell

> IEEE 802.3dj Task Force Plenary Meeting Waikiki, HI

November 12, 2023

# List of Contributors

- Matt Brown Alphawave
- Adam Healey Broadcom
- Vasu Parthasarathy Broadcom
- Roberto Rodes Coherent
- Ali Ghiasi Ghiasi Quantum/ Marvell
- Kent Lusted Intel
- Mike Dudek Marvell
- Whay Lee Marvell
- **Chris Cole Quintessent**

# List of Supporters

- David Cassan Alphawave
- **Henry Wong Alphawave**
- John Johnson Broadcom
- **Cedric Lam Google**
- Xiang Zhou Google
- **Arash Farhoodfar Marvell**
- Lenin Patra Marvell
- **Drew Guckenberger Maxlinear**
- **Sridhar Ramesh Maxlinear.**

## **Overview**

### Benefits of optical link training

- Optimum transmit configuration providing improved BER
- Energy efficiency
- Why optics link training challenging
- Background on Ethernet link training
- Proposed optics link training
  - Limited to preset initially but with ability to extend to full autonomous tuning
- Optics link training process and flow
- **Summary.**

# Benefits of Optical Link Training

#### Benefits of adjusting pre-emphasis/boost

- Transmitter with large amount of pre-emphasis used with high BW receiver may result in clipping
  - Some transmitters that meet TDECQ may have excess boost at expense of sub-optimum receive BER
- Slow transmitters with low distortion meeting TDECQ may benefit from extra boost used with low BW receivers

#### Increase ratio of outer/inner eyes

- MZM modulators have compression of outer eyes that may benefit from adjusting inner/outer eye
- Receivers may have some compression that benefits from adjusting outer eyes
- EA modulators can also take advantage of this with applied bias/signal are adjusted for EA non-linear response

#### OMA control

- Optical transmitters are designed to operate over maximum loss cable plant and launch condition
- Reducing OMA increases energy efficiency
- Reducing OMA may also mitigate overload and improve BER

#### Chirp and dispersion control

- Beneficial for >2 km links to mitigate dispersion penalty, most noticeably on outer wavelengths L0 and L3
- An optical transmitter with the above preset controls more likely may operate with FECi bypassed and/or operate with lower transmit power.

### Pre-emphasis/overshoot Impact on 400GBASE-FR4 Links

#### Pre-emphasis/overshoot can both improve and degrade the link BER

- Generally increasing overshoot (reducing Ceq) improves TDECQ
- In the example below overshoot resulted in error floor in the TIA
  - https://grouper.ieee.org/groups/802/3/cu/public/March20/rodes\_3cu\_01a\_031720.pdf

### Achieving Robust Transmitter Compliance



Mid-OMA region: use overshoot for compliance

## Pre-Emphasis Generally Improves TDECQ

But may result in overload and error floor as shown below for 802.3cu transmitters!

- https://www.ieee802.org/3/cu/public/cu\_adhoc/cu\_archive/rodes\_3cu\_adhoc\_030520\_v2.pdf
  - Background presentation <u>https://www.ieee802.org/3/cu/public/Jan20/cole\_3cu\_01b\_0120.pdf</u>.



#### TDECQ vs Rx performance

### TDECQ is not Always a Good Indicator of Link BER

- □ The 802.3db transmitters below TDECQ improves with increasing overshoot (decreasing Ceq), but for overshoot >~20% (~<1.1 dB) the link develops an error floor!
  - <u>https://www.ieee802.org/3/db/public/September-09-September-29-2021/ghiasi\_802.3db\_01\_092321.pdf.</u>



# Potential Energy Efficiently

- What is the potential for energy efficiency if OMA and CW is reduced by ½ with link training?
- 800G-FR4 links with semi-cooled EMLs
  - EML with max lop=120 mA, Vop(max)=1.9 V, operating from 3.3 V supply, min EA driver amplitude 1.25 V single ended into 50  $\Omega$ 
    - Power saving due to CW reduction by ½ per DFB ~1 pJ/bit
    - Power saving due to CMOS driver swing reduction to keep constant ER ~0.2 pJ/bit
    - Power saving due to TEC heat load reduction ~2.25 pJ/bit (see the next page)
  - Power saving with no TEC: ~1pJ/bit
  - Power saving with TEC: ~3 pJ/bit
- □ 800G-DR4 link with Si MZM and one high power uncooled DFB CW source
  - DFB with max lop=300 mA, Vop(max)=1.9 V, operating from 3.3 V supply, min MZM drive amplitude
     2.5 V Diff(p-p)
  - Power saving due to CW reduction by ½ per 200G lane: ~0.6 pJ/bit
  - Power saving due to non-CMOS driver swing reduction to keep constant ER: ~0.5 pJ/bit
  - Power savings: ~1 pJ/bit

# **Reducing TEC Heat Load**

Semi-cooled EML at 50 °C with case temperature of 75 °C and max heat load for 4 DFB/EA (4x1.9V\*0.12 A)=0.91 W but rounded to 1 W

Link to online TEC product and calculator

https://tetech.com/peltier-thermoelectric-cooler-modules/micro/

- TEC power consummation with DFB at max current 120 mA  $0.8A^*(2x1.5)^1$  V= 2.4 W
- TEC power consummation with DFB at  $\frac{1}{2}$  the current 60 mA 0.4A\*(2x0.75) <sup>1</sup> V= 0.6 W
- The TEC power saving by reducing DC light by ½ is 0.45 W/DFB or 2.25 pJ/bit!





1. Assumes TEC driver supply is 2x TEC voltage drop and supply voltage is reduced when thermal load is smaller thermal load.

# Why Optical TX Link Training is Challenging

### **Unlike CR/KR optical devices may require specific adjustment based on the device type**

- VCSEL/DML asymmetrical turn-on/off
- MZM cosine compression minor effect for IMDD applications
- Electro-absorption (EA) non-linear transfer response
- Combination of chirp and dispersion on SMF may create pulse compression

### Transmit FFE adjustment only provides linear frequency compensation

- Proposed Optic-LT will not provide non-linear adjustments specific to different class of optics
- Different presets may include aspect of non-linear compensation based on device type
- But all presets must be known good setting that operate with the reference equalizer otherwise receiver may lose lock

#### Optical link training may provide significant benefit for some optical PMDs

- Need to quantify the benefit of optics training for the adopted SMF PMDs
- Need to define the presets and the FFE tap ranges/step/weight for each of the optical PMDs.

### **Optics AN and Link Training**

Expanded CL136 LT Frame Supporting PAM4

#### For proposed optics AN, see Brown 3dj 01 2311

#### Optics LT leverages 802.3 CL 136/162 LT link to operating as point-point

- Optics LT exchange is between the two modules
- CL136/162 Control/status fields are transmitted with DME (Differential Manchester Encoding) at 1/8 the Baudrate followed by PRBS13Q as PAM4 training pattern
  - FECo DME control/status operates at 1/8 of 106.25 GBd (13.28 GBd) with training pattern at full rate
  - FECi DME control/status operates at 1/8 of 113.4375 GBd (14.18 GBd) with training pattern at full rate.



## Leveraging CL136 Link Training for Optics-LT

- **Training frame structure based on 136.8.11.1**
- Training pattern and training PRBS pattern based on 136.8.11.1.3
- Control field structure and status field structure generally follows 162.8.11 with the difference captured in this contribution
  - If 802.3dj modifies KR/CR PMD control then will follow those changes when possible.





# **Proposed Optical Link Training**

#### □ The link training leverages 802.3 CL136/162 for Optics-LT on a single point-point optical segment

- Proposal makes minor modification to CL136/162 to support Optics-LT by segmenting optical link in a similar manner to CR/KR point-point link with repeaters
- Electrical link training on AUIs are outside the scope of Optics LT
- Optics DME/training can be driven by recovered clock from the host or the module reference clock
- Link training proposal for currently proposed SMF PMDs is limited to presets only to mitigate any risk
  - Future PMDs may choose to extend the Optics LT to autonomous FFE adjustment.



### Proposed Optics Link Training Limited to Transmit Presets

Leverage CL162 control field Modulation-Precoder to enable pre-coder (see back up)

#### Preset1 is the default setting that TDECQ must be met

- Preset 2-10 are allowed 40% excursion above the TECQ/TDECQ limit to minimize additional testing
- Preset 2-10 meeting a TDECQ with guard-band prevents misbehaving transmitters where CDR loses lock
- Optics LT limited to presets and not full autonomous FFE tuning
  - Potential proposed presets address BW limitation/over emphasis, compression, power, chirp/dispersion control
    - Preset1 Default setting only needs to meets TDECQ
    - Preset2 Increase pre-emphasis +7.5%
    - Preset3 Decrease pre-emphasis -7.5%
    - Preset4 Increase ratio of outer/inner eye Y%
    - Preset5 Decrease ratio of outer/inner eye Y%
    - Preset6 Positive CD
    - Preset7 Negative CD
    - Preset8 Decrease OMA by 1 dB
    - Preset9 Decrease OMA by 2 dB
    - Preset10 Decrease OMA by 3 dB.

Bandwidth compensation

Compression/non-linear compensation

To manage CD dispersion on 10 km links

Optical signal power control

# Link Training Process

#### Proposed link training for 802.3dj PMDs limited to presets (under study)

- Presets are additive and are applied in sequential order Preset[2:10] unless skipped
- Default preset only need to meet TDECQ limit
- Preset [2:10] are allowed to have 40% excursion in TDECQ limit to minimize test time
- Pre-emphasis, compression, and chirp/carrier frequencies are adjusted at constant average power
- If the link has sufficient margin last step is to reduce OMA at constant ER to maximize the energy efficiency (decreases average power)
- Need to devise a method for modules advertisement that don't support all the presets
- Given that optics presets are additive to better preserve CL162 training different type of controls (preemphasis, OMA, etc.) can be fitted to an FFE coefficient select

#### How a fully autonomous link training may look like (under study)

- Start with default preset conditions, including CW source power and FFE gain
- Converge TX FFE coefficients based on far end error signal instead of utilizing preset 2/3
  - Go through compression presets and chirp preset (if applicable)
- If the link has sufficient margin OMA is reduced at constant ER to maximize the energy efficiency
- Fine tune TX FFE coefficients based on far end error signal.

### **Summary**

#### **Why task force should consider optical transmit adaption**

- Optical transmitters are tuned with higher-higher emphasis to get the best TDECQ, but for many links/receivers lower TDECQ not always equates with better link BER
  - Some of the transmitters with excess emphasis for the given link/receiver may have orders of magnitude worse BER
  - But a low BW link/receiver almost always will benefit from higher emphasis
- Optics is consuming over 50% (~2000 W or 39 pJ/bit)of 51.2 Tb switch power and data centers operators are demanding better optics energy efficiency
  - Optical links are designed for maximum power launch condition into cable plants with maximum loss
  - Majority of optical links have excess optical power, which may degrade the BER
  - For SMF uncooled PMDs ~ 1pJ/bit and for cooled PMDs ~ 3 pJ/bit energy can be saved which is significant considering 102.4 Tb system

Assuming optical automatic link configuration for optics (AN), <u>Brown\_3dj\_01\_2311</u> is adopted the DME facility will exist to perform transmitter adaption for optical links

- Optics LT will leverage as much as possible proven Clause 136/162 training and flow
- Consider this proposal as a work in progress for optical link adaption with feedback appreciated!

## CL 162 PMD Control Function (backup)

Table 162–9—Control field structure

| Bit(s) | Name                             | Description                                                                    |
|--------|----------------------------------|--------------------------------------------------------------------------------|
| 15:14  | Reserved                         | Transmit as 0, ignore on receipt                                               |
| 13:11  | Initial condition request        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                           |
| 10     | Reserved                         | Transmit as 0, ignore on receipt                                               |
| 9:8    | Modulation and precoding request | 9 8<br>1 1 = PAM4 with precoding<br>1 0 = PAM4<br>0 1 = Reserved<br>0 0 = PAM2 |
| 7:5    | Reserved                         | Transmit as 0, ignore on receipt                                               |
| 4:2    | Coefficient select               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                           |
| 1:0    | Coefficient request              | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                          |

CL162 Presets are not additive and would require some modification to the CL136/162 to make the presets additive!

By leveraging coefficient select field instead for Pre-emphasis, compression, CD control, and OMA with 2 or 4 settings the effects are additive and existing CL136/162 training can be reused!

# High Level Link Training Process (backup)

### **Electrical AUIs and optical segments are trained as point-point segments**

- This approach simplifies electrical and optical link training and backward compatible 100G-AUIs
- With AUI trained the optics LT starts with known good clock (same as clock mission mode)

### Module data path is initialized

### Local AUI trained

- Wait till remote AUI trained
- Completion of remote AUI status through Optics AN

### Leverage CL 136/162 training as much as possible

- With caveat that the current proposal is limited to presets only with ability to expand as needed

### After optics LT is completed the module through CMIS inform the host

- Host configure the module for mission mode.