## P802.3dj Draft 0.1 Architectural considerations

Matt Brown, Alphawave, P802.3dj Editor-In-Chief Gary Nicholl, Cisco, Logic Track Lead

> IEEE P802.3dj Task Force January 2024

### Introduction

- In Draft 0.1, the editorial team made some discussion-worthy decisions in favor of a concise and elegant standard.
- Define PMD service interface to be analog signal vs symbols.
- Define Inner FEC with PMA above forming 200G lanes.
- Define separate PMA for bit-muxing and symbol muxing.
- Unique nomenclature for symbol and bit multiplexing PMAs.
- Unique nomenclature for IMDD Inner FEC and Coherent Inner FEC.

### **PMD Service Interface**

### **PMD** service interface (SI) primitives

- During 802.3df comment resolution...
  - specified the 800GBASE-R PMA and PMD sublayer delay limits as though the equalization, clock recovery, and data recovery, etc., were part of the PMA (not PMD)
  - for symmetry amongst 100 Gb/s per lane PHYs, left the 800GBASE-R PMD SI primitives defined as though the PMD is detecting the PAM4 symbols
  - this left a bit of dissonance that might be addressed in 802.3dj for new lane rates
- In 802.3dj Draft 0.1, redefined the PMD SI primitives appropriately.

### **PMD SI primitives**

In particular, we are discussing the primitives PMD:IS\_UNITDATA\_i.request PMD\_IS\_UNITDATA\_i.indication as shown in the figure to the right.

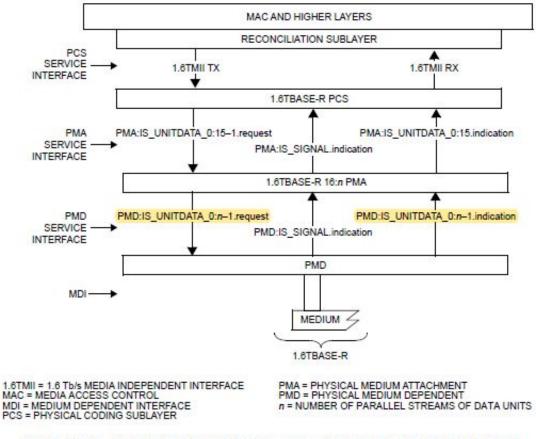



Figure 174–3—1.6TBASE-R inter-sublayer service interfaces not including 1.6TMII Extender

### **PMD SI primitives**

In Draft 0.1, reusing all of the SI primitive definitions from Clause 116, except for the PMD SI.

The PMD SI parameters are redefined as a signals rather than symbols, leveraging work in P802.3cw.

The TX and RX parameters are tx\_signal and rx\_signal.

The excerpt to the right is for 1.6TBASE-R PHYs.

#### 174.3.3 Semantics of inter-sublayer service interface primitives

The semantics of the inter-sublayer service interface primitives for the 1.6TBASE-R sublayers are described in 116.3.3.1 through 116.3.3.3, with the exception that the PMD service interface is described in 174.3.4.

174.3.4 Semantics of the PMD service interface primitives

#### 174.3.4.1 IS\_UNITDATA\_i.request

The IS\_UNITDATA\_i.request (where i = 0 to n - 1) primitive is used to define the transfer of multiple streams of data units from the client sublayer, where n is the number of parallel streams of data units.

Semantics of the service primitive IS\_UNITDATA\_0.request(tx\_signal) IS\_UNITDATA\_1.request(tx\_signal) ... IS\_UNITDATA\_n-1.request(tx\_signal)

The data conveyed by IS\_UNITDATA\_0:n-1.request consists of n parallel continuous streams of encoded symbols, one stream for each lane. The tx\_signal parameter conveys an analog signal to be processed by the PMD.

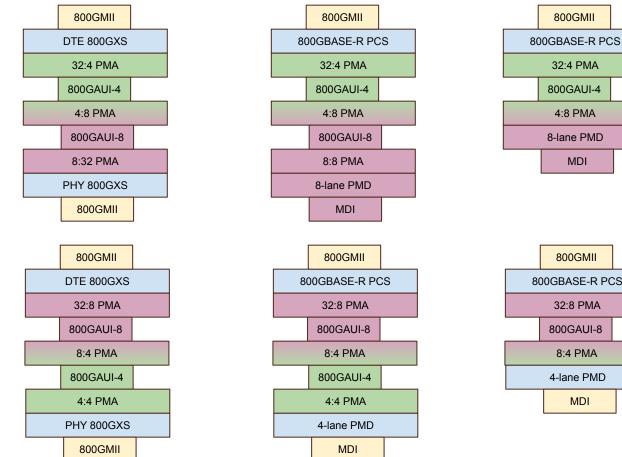
#### 174.3.4.2 IS\_UNITDATA\_i.indication

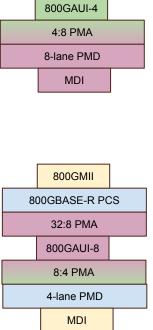
The IS\_UNITDATA\_i.indication (where i = 0 to n - 1) primitive is used to define the transfer of multiple streams of data units to the client sublayer, where n is the number of parallel streams of data units.

Semantics of the service primitive

IS\_UNITDATA\_0.indication(rx\_signal) IS\_UNITDATA\_1.indication(rx\_signal)

IS\_UNITDATA\_n-1.indication(rx\_signal)

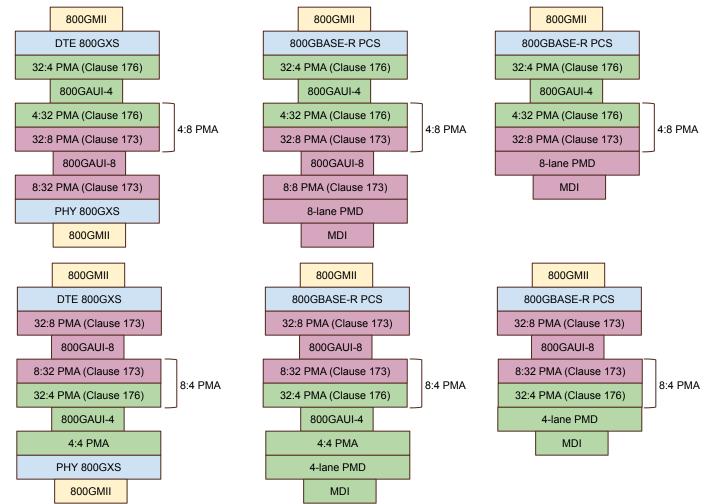

The data conveyed by IS\_UNITDATA\_0:n-1.indication consists of n parallel continuous streams of encoded symbols, one stream for each lane. The rx\_signal parameter conveys an analog signal to be processed by the client sublayer.


## **PMA symbol and bit muxing**

### PMA, conversion between symbol-mux and bit-mux

- The following is how it was portrayed in the adopted PMA baseline.
- For 200 Gb/s per lane AUI/PMD the PMA must support FEC-symbol-muxing.
- If a 100 Gb/s (or lower) AUI is used along with a 200 Gb/s AUI and/or PMD then a conversion between bit-muxing (BM) and symbol-muxing (SM) is required.
- For example, for 800GE, in addition to the 32:4, 4:4, 4:32 SM PMAs, 8:4 and 4:8 PMAs which convert between SM and BM are required.
- Some examples follow.

### 800G, with mixed interleaving per PMA (option #1)






### PMAs, mux conversion alternate

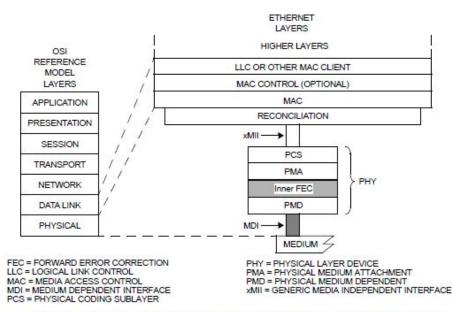
- Conversion between SM and BM requires that the PMA first demux to PCS lanes then mux back to physical lanes.
- So rather than defining a single PMA to convert between and have to define both SM and BM in the same clause we can use a pair of PMAs, one with BM and the other with SM.
- For examples, for 800GE, conversion from 8 lanes AUI (BM) to 4 lanes PMD (SM) we can use an 8:32 BM PMA (Clause 173) plus a 32:4 SM PMA (Clause 176).
- This was the path taken in Draft 0.1.
- Some examples follow.

### 800G, without mixed interleaving per PMA (option #2)



IEEE P802.3dj Task Force, January 2024

### **Inner FEC and PMAs**


### **PMA above IMDD Inner FEC**

- The baselines for the IMDD Inner FEC (see Clause 177) were written with the assumption that a PMA above would multiplex PCS lanes to a 200 Gb/s physical lane.
- For 200G and 400G the PMA would also extend the RS-FEC codeword interleaving from 2 to 4 codewords.
- Traditionally, a PMA is not required between a PCS/XS and a supplementary FEC sublayer, however, in this case a PMA will always be required with or without an AUI above the Inner FEC sublayer.
- Related baselines are here:
  - <u>https://www.ieee802.org/3/dj/public/23\_03/patra\_3dj\_01b\_2303.pdf</u>
  - https://www.ieee802.org/3/dj/public/23 07/he 3dj 01 2307.pdf
  - https://www.ieee802.org/3/dj/public/23\_07/he\_3dj\_02a\_2307.pdf

### **PMA below IMDD and Coherent Inner FEC**

- The baselines for both the IMDD (Clause 177) and Coherent (Clause 194) Inner FEC sublayer showed a PMA below the Inner FEC.
- However, it was not clear that a PMA is required there as some of that functionality is subsumed in the inner FEC soft decoder.
- So rather than define a PMA below the Inner FEC the draft defines the Inner FEC as including all of the (below) PMA functionality thus avoiding defining a pair of sublayers and definition of service interface between that likely would not be physically instantiated.
- Thus in Draft 0.1 the Inner FEC is defined to be immediately above the PMD, subsuming the sparse functionality of the PMA.

### **IMDD Inner FEC in Draft 0.1**





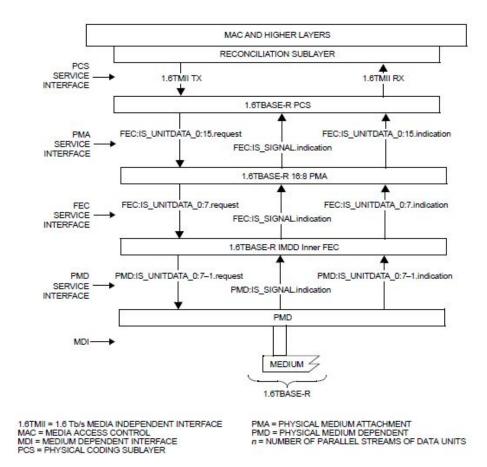
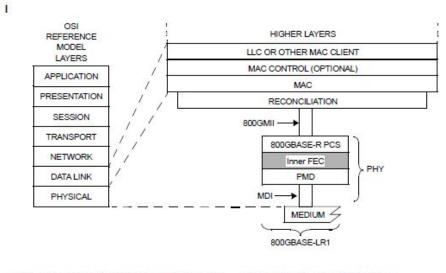




Figure 174–4—1.6TBASE-R inter-sublayer service interfaces including Clause 177 Inner FEC and not including 1.6TMII Extender

# Coherent Inner FEC in Draft 0.1



800GMII = 800 Gb/s MEDIA INDEPENDENT INTERFACE FEC = FORWARD ERROR CORRECTION MAC = MEDIA ACCESS CONTROL MDI = MEDIUM DEPENDENT INTERFACE PCS = PHYSICAL CODING SUBLAYER PHY = PHYSICAL LAYER DEVICE PMA = PHYSICAL MEDIUM ATTACHMENT PMD = PHYSICAL MEDIUM DEPENDENT

Figure 184–1—Inner FEC relationship to the ISO/IEC Open Systems Interconnection (OSI) reference model and the IEEE 802.3 Ethernet model

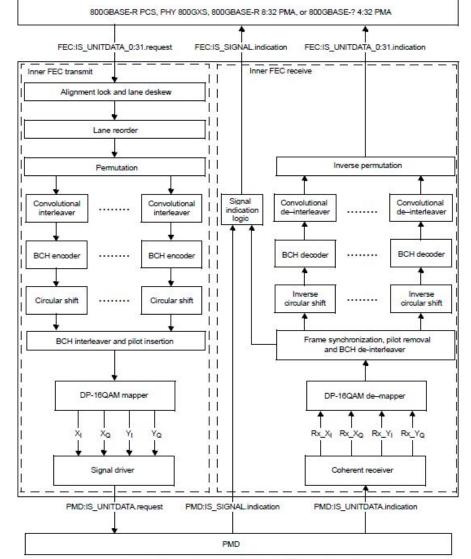



Figure 184–2—Inner FEC functional block diagram

## Terminology

### **Terminology: Inner FEC for IMDD and Coherent PHYs**

- Two Inner FEC sublayers are specified
  - "IMDD" Inner FEC (Clause 177)
  - "Coherent" Inner FEC (Clause 184)
- We have not adopted a short form to use for these and the long forms above are rather verbose to include in text, tables, etc.
- More compact, yet distinguishable, terms would be helpful in various parts of the draft.
- For the time being in Draft 0.1...
  - Using just "Inner FEC" within the Inner FEC clauses (177 and 184).
  - Elsewhere, if necessary to distinguish, using "IMDD Inner FEC" and "Coherent Inner FEC".

#### cont...

#### 169.2.4a Inner FEC sublayer

The Inner FEC sublayer provides error correction, in addition to that provided by the 800GBASE-R PCS, for the PMD.

For 800GBASE-DR4-2, 800GBASE-FR4, and 800GBASE-LR4 the Inner FEC is specified in Clause 177.

For 800GBASE-LR1 the Inner FEC is specified in Clause 184.

### **Terminology: Symbol/Bit muxing PMAs**

- For PMDs or AUIs with 200 Gb/s per lane the PMA provides FEC-symbol multiplexing, rather than bit multiplexing.
- Terms are required to distinguish between the SM and BM PMAs especially when both are described within the same text, tables, and figures.
- Where necessary in Draft 0.1, using the the term "SM PMA" for the symbol multiplexing PMA and "BM PMA" for the bit multiplexing PMA.

#### cont...

Table 116-3—PHY type and clause correlation (200GBASE copper)

|              | Clause <sup>a</sup> |     |     |         |                  |                |                   |               |               |               |                  |                  |                 |                 |                                |               |                 |                 |
|--------------|---------------------|-----|-----|---------|------------------|----------------|-------------------|---------------|---------------|---------------|------------------|------------------|-----------------|-----------------|--------------------------------|---------------|-----------------|-----------------|
| PHY type     | 73                  | 78  | 117 |         | 118              | 119            | 120               | 120B          | 120D          | 120F          | 136              | 137              | 162             | 163             | <u>176</u>                     | <u>176B</u>   | 178             | 179             |
|              | Auto-Negotiation    | EEE | RS  | 200GMII | 200GMII Extender | 200GBASE-R PCS | 200GBASE-R BM PMA | 200GAUI-8 C2C | 200GAUI-4 C2C | 200GAUI-2 C2C | 200GBASE-CR4 PMD | 200GBASE-KR4 PMD | 200GAUI-CR2 PMD | 200GAUI-KR2 PMD | 200GBASE-R <mark>SM</mark> PMA | 200GAU1-1 C2C | 200GAUI-KRI PMD | 200GAUI-CRI PMD |
| 200GBASE-KR1 | M                   |     | M   | 0       | 0                | M              | 0                 | 0             | 0             | 0             |                  |                  |                 |                 | М                              | 0             | M               |                 |
| 200GBASE-KR2 | Μ                   |     | Μ   | 0       | 0                | Μ              | M                 | 0             | 0             | 0             |                  |                  |                 | Μ               | 0                              | 0             |                 |                 |
| 200GBASE-KR4 | Μ                   | 0   | Μ   | 0       | 0                | M              | M                 | 0             | 0             | (d            |                  | M                |                 |                 | 0                              | 0             |                 |                 |
| 200GBASE-CR1 | M                   |     | M   | 0       | 0                | M              | 0                 | 0             | 0             | 0             |                  |                  |                 |                 | M                              | 0             |                 | M               |
| 200GBASE-CR2 | Μ                   |     | Μ   | 0       | 0                | Μ              | Μ                 | 0             | 0             | 0             |                  |                  | M               |                 | 0                              | 0             |                 |                 |
| 200GBASE-CR4 | Μ                   | 0   | Μ   | 0       | 0                | Μ              | Μ                 | 0             | 0             | 12 2          | Μ                |                  |                 |                 | 0                              | 0             |                 |                 |

 $^{a}O = Optional, M = Mandatory.$ 

## **Thanks!**