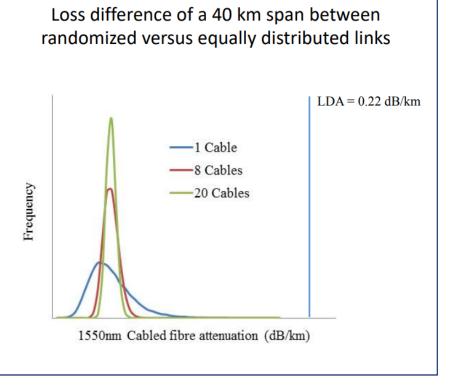
IEEE P802.3dj Interim Meeting, 22-25 January 2024

Study on Loss_Q for 800G-ER1

Qirui Fan⁽¹⁾, Chendi Jiang⁽²⁾, Xiang Liu⁽¹⁾, Chris Cole⁽³⁾, Rang-Chen (Ryan) Yu⁽⁴⁾, Nobuhiko Kikuchi⁽⁵⁾, Frank Chang⁽⁶⁾, Maxim Kuschnerov⁽⁷⁾, and Frank Effenberger⁽⁸⁾

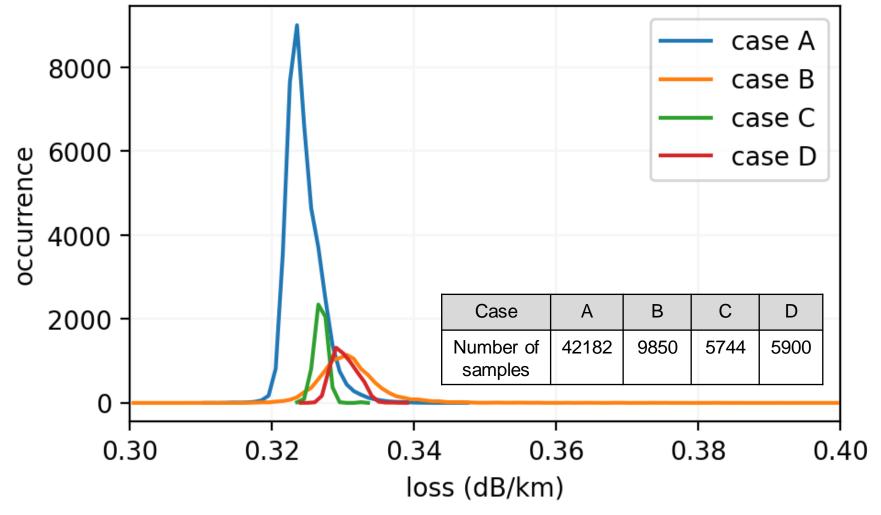
⁽¹⁾Huawei Hong Kong Research Center, China; ⁽²⁾Huawei Technologies, Wuhan, China; ⁽³⁾Coherent, USA; ⁽⁴⁾InnoLight; ⁽⁵⁾Hitachi, Japan; ⁽⁶⁾Source Photonics; ⁽⁷⁾Huawei European Research Institute, Germany; ⁽⁸⁾Futurewei, USA.

Supporters

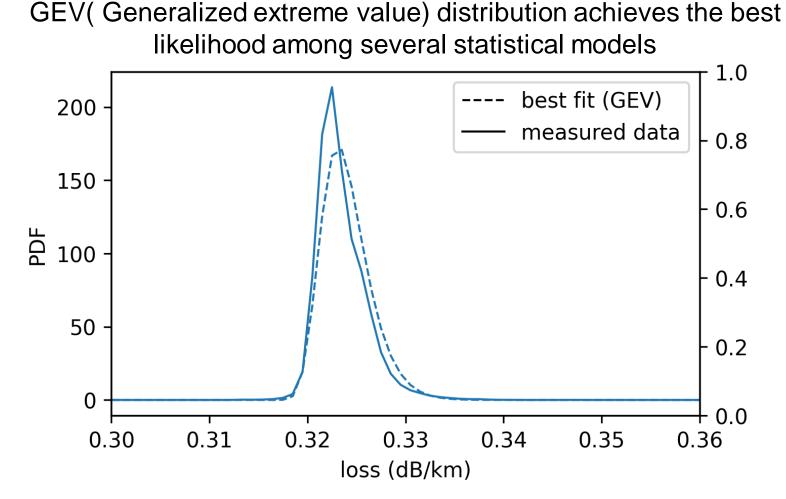

- Roberto Rodes (Coherent)
- Vincent Ferretti (Corning)

Introduction

- In the November 2023 IEEE 802 plenary meeting, the baseline proposal for 800GBASE-LR4 (<u>rodes 3dj 01a 2311</u>) was approved, with the chromatic dispersion (CD) values to be specified by using a statistical methodology similar to PMD_Q.
- The same statistical methodology has also been used for fiber loss to specify the link design attenuation (LDA) (<u>20190717-Link Loss</u> and <u>20191112-Ferretti_3cs_01</u>), which has been adopted in IEEE 802.3cs (SuperPON) (<u>20200617-Du_3cs_01a</u>).
- In this contribution, we extend the statistical methodology to fiber loss and evaluate the Loss_o values for G.652 fibers in the O-band.
- The use of the Loss_Q methodology may make it feasible for 800G-ER1 and 800G-LR1 to operate in the O-band with the same FEC, and provide more link margin for IMDDbased solutions.


Background on LDA

- According to <u>20190717-Link Loss</u> and <u>20191112-Ferretti</u> <u>3cs</u> <u>01</u>, when optical links have multiple (>8) concatenated links, statistical modeling can be used to determine more realistic and economical design models
- IEEE 802.3cs (SuperPON) has adopted the LDA model that reduces the G.652 fiber loss spec from 0.3dB/km to 0.22dB/km in the C-band by assuming M=8 and Q=1E-3, as shown on the right hand side.
- The LDA model adopted in IEEE 802.3cs also reduces the L-band loss spec from 0.35dB/km to 0.24dB/km (20200617-Du_3cs_01a).
- We can apply the LDA model to O-band fiber loss spec for IEEE 802.3dj.


After 20190717-Link Loss slide 8.

Typical G.652 fiber loss distributions in the O-band (~1310nm)

Here, Case A is the best case, while Case B is the worst case.

Analytical modeling of the fiber Loss distribution

Insights: fiber loss has minima by nature, and GEV can both describe data maxima/minima and the distribution.

Analytical evaluation of link Loss_Q **distribution**

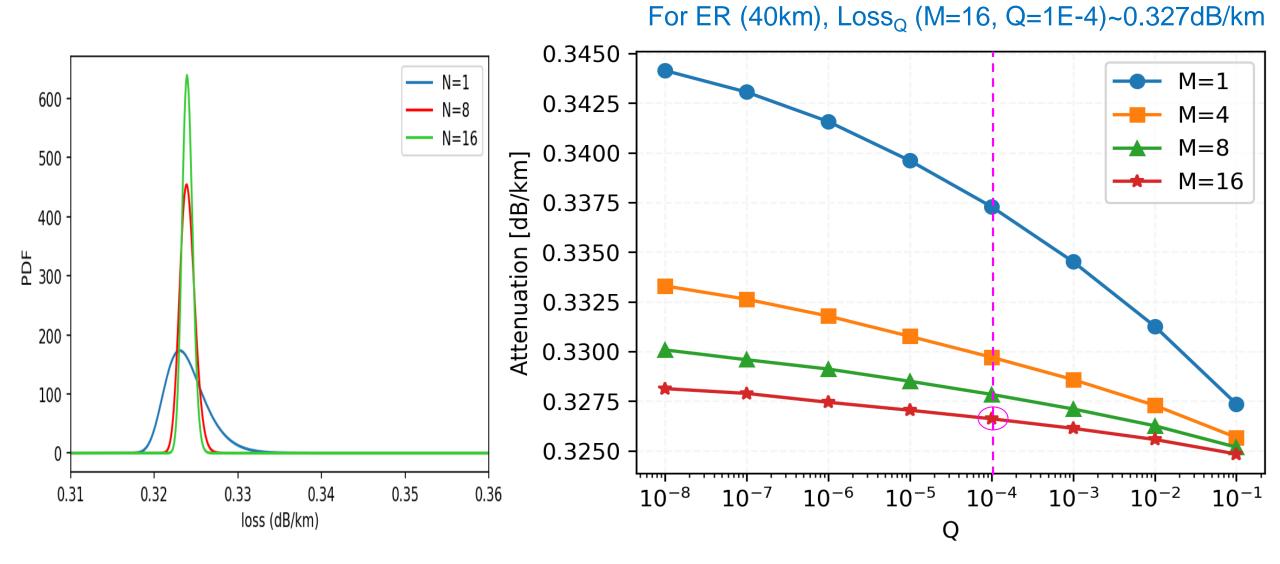
We can derive the GEV distribution of the fiber loss from the measured data

 $Loss(\lambda) = GEV(\mu, \sigma, \xi),$

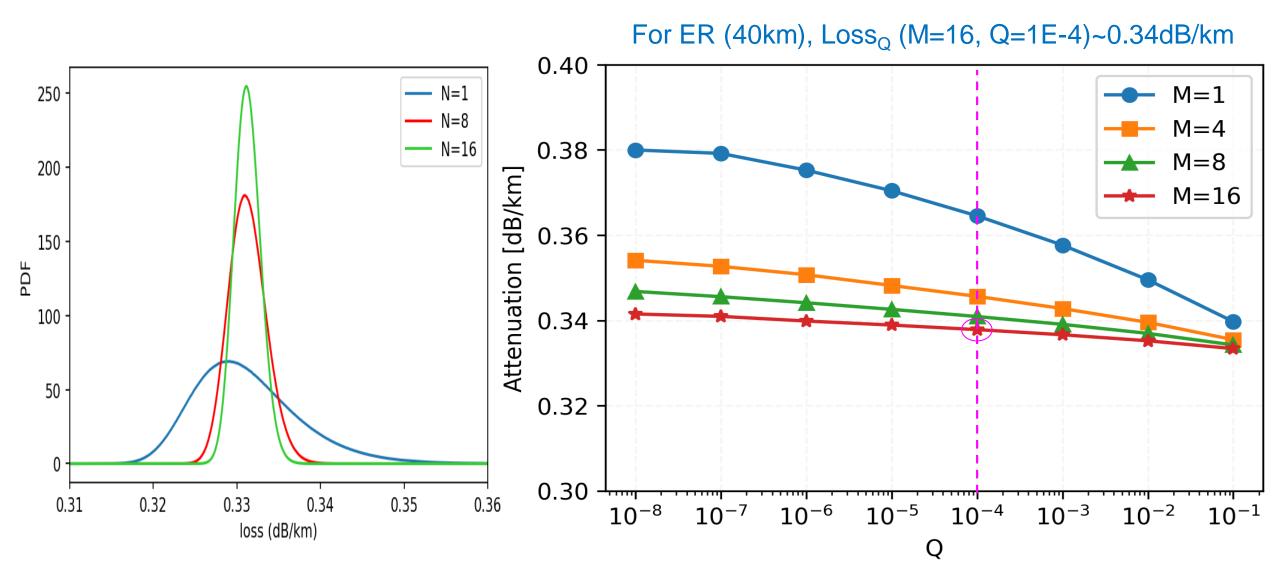
where μ is the location parameter, σ is the scale parameter, and ξ is the shape parameter [1],

which are determined through maximal likelihood estimation (MLE).

In the case of cable segmentations,


$$Loss_{M}(\lambda) = \sum_{i=1}^{M} L_{Cab}Loss_{i}(\lambda)/M$$

where $L_{Cab} = 40$ km for ER


Numerically, $Loss(\lambda)$ and $Loss_M(\lambda)$ are evaluated via Monte Carlo Analysis.

[1] See, for example, <u>https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution</u> IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force

Loss_Q for Case A (the best case)

Loss_Q for Case B (the worst case)

800G-ER1 link budget analysis

- 1) The minimum transmitter power can be increased to 0 dBm (e.g., via SOA or BDFA [1])
- 2) The receiver sensitivity can be set conservatively as -17 dBm [2]

ROP (dBm)	OB2B	LR		ER		
		typical+300kHz	Worst+2MHz	typical+300kHz	worst+2MHz	worst+2MHz+OA
OFEC@BER=2E-2	-20.98	-20.92	-20.48	-20.46	-19.72	-19.56
KP4 + BCH @BER=1.1E-2	-19.8	-19.75	-19.24	-19.25	-18.41	-18.21
Difference in ROP (dB)	1.18	1.17	1.24	1.21	1.31	1.35

- 3) Allocating 1 dB for transmission penalty [2], the loss budget becomes 16 dB.
- 4) Assuming Loss_Q=0.34dB/km for ER (M=16, Q=1E-4), we have 2.4dB (=16dB-0.34dB/km*40km) extra margin, which can be used for accommodating connector losses, bending losses, and splice losses (e.g., 16*0.015dB/splice=0.24dB [3]).
- [1] D. Elson et al., "9.6-THz Single Fibre Amplifier O-band Coherent DWDM Transmission", Post-deadline paper Th4B.4, OFC 2023.
- [2] stassar_3dj_01a_2307.
- [3] C. Zhang et al., "Optical Layer Impairments and Their Mitigation in C+L+S+E+O Multi-Band Optical Networks With G.652 and Loss-Minimized G.654 Fibers," in Journal of Lightwave Technology, vol. 40, no. 11, pp. 3415-3424, 1 June, 2022.

Conclusion

- The statistical methodology used for PMD_Q and CD_Q has been applied to fiber loss by defining LDA in the C-band and the L-band.
- Based on some measured G.652 fiber loss data, we have evaluated preliminary Loss_Q values in the O-band.
- The use of the Loss_Q methodology may make it feasible for 800G-ER1 and 800G-LR1 to operate in the O-band with the same FEC (KP4+BCH), as well as more link margin for IMDD-based solutions.

Thank you!