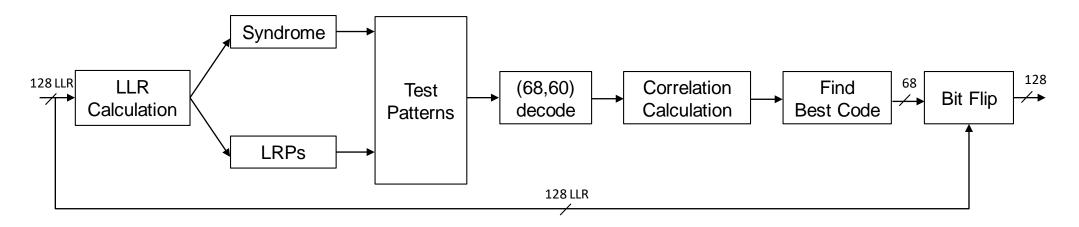
Low Latency Mode for Inner FEC

Xiang He, Kechao Huang Huawei Lenin Patra, Mike Dudek Marvell

IEEE P802.3dj Task Force, November 2023

Supporters

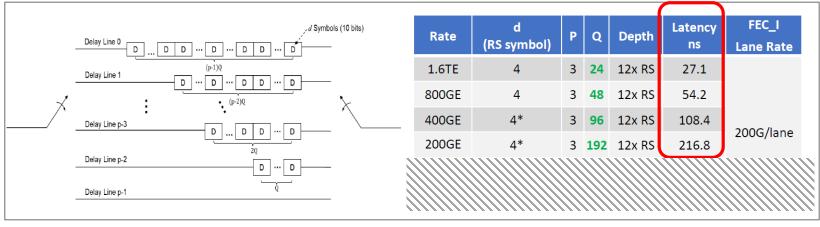

Roberto Rodes,	Coherent					
Ali Ghiasi,	Ghiasi Quantum					
Arash Farhood,	Marvell					
Ernest Muhigana, Lumentum						
Helen Xu,	Huawei					
Richard Xiao,	Linktel Technologies					
Haifeng Liu,	HG-Genuine					
Chongjin Xie,	Alibaba					
Michael He,	Innolight					
Xu Sun,	Crealights					
Mike Teng,	Hisense					
Chris Cole,	Quintessent					

Introduction

- Latency is critical to AI and ML applications.
- Power limitation is another critical issue for 800GE/1.6TE in data center network.
- "Inner FEC bypass" has been proposed multiple times to achieve low latency/power.
 - See he 3dj 02a 230206, welch 3dj 03c 2305, welch 3dj 04a 2307, bernier 3dj 01 2309,...
- FECo mode has been adopted for 200GBASE-DR1, 400G-BASE-DR2, 800GBASE-DR4 and 1.6TBASE-DR8 for lower latency.
- This contribution proposes an option to operate the inner FEC (aka FECi mode) with the convolutional interleaver (CI) "bypassed" to lower the latency and power for other PMDs.
 - Performance of FECi w/o CI is analyzed.
 - The word "bypass" in this contribution means the CI is there, but is not used.

Revisit: Latency of Inner Code Decoder

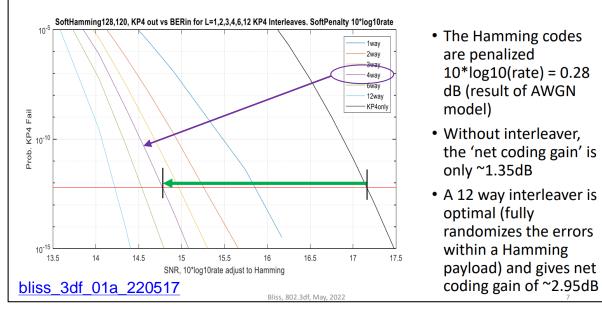
- The decoding latency of the inner FEC code itself is minimal.
 - Short BCH/Hamming decoding latency is as low as 1~10ns depending on algorithm (HD or SD).
 - = 200 GbE using 2xRS codewords interleaving has a PCS latency (including FEC) of 88.2 ns.
 - See brown 3dj optx 01b 230413
 - Adding the 4x RS codewords interleaving conversion, the total FEC related latency would be 139.4ns.
 - Typical latency for the inner code encoding/decoding w/ the PAM4 interleaver is ~15ns (~10.8% of 139.4ns)
 - Equivalent to 3m of optical fiber.

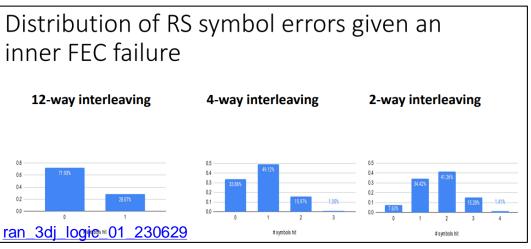


Typical Soft-decision Decoding Flow

Interleaver for Concatenated FEC

- Interleaver between outer and inner code can systematically distributed the "clustered" errors from inner code decoders.
- For block codes like RS FEC, convolutional interleaver (CI) is often used to lower latency compared to block interleaver of equivalent depth.
 - 12 RS codeword CI was adopted to maximize the performance, but with a latency penalty especially for 200/400GbE.


he_3dj_01_2307.pdf


Type-2 FEC Performance vs Interleaving Depth of RS(544,514)

- <u>bliss 3df_01a_220517</u> compared FEC performance with different interleavers.
 - 4-way RS interleaving gives ~2.45dB more NCG comparing to KP4 only, while 12-way RS interleaving gives 2.95dB.
- <u>ran 3dj logic 01 230629</u> analyzed distribution of RS-FEC symbol errors caused by inner FEC failure.
 - Following measured BER at module output is suggested:
 - To get CER=8e-13 (equivalent of the FLR target):
 - Without inner FEC: <2.4e-4
 - With inner FEC and 12-way interleaving: <2.85e-4
 - With inner FEC and 4-way interleaving (800G/1.6T): <8e-5
 - With inner FEC and 2-way interleaving (200G/400G) : <2.1e-5

ran_3dj_logic_01_230629

- This does not mean having inner FEC with 4-way RS interleaving performs worse than KP4 only (FECo mode).
- Equivalent PMD BER shall be evaluated.

Performance Evaluation of Different FEC Schemes

- We compared the FEC performance in terms of PMD BER threshold and latency, with the following variables:
 - **FEC scheme:** Type 1, Type 2 w/ Cl, Type 2 w/o Cl.
 - Ethernet Rates: 100 GbE, 200 GbE, 400 GbE, 800 GbE and 1.6 TbE.
 - **Physical lane rates:** 100G/lane and 200G/lane PMDs.
 - **RS-FEC interleaving depth:** 2x for 100G/lane PMDs, 4x for 200G/lane PMDs
 - AUI error propagation factor: 0, 0.75
 - **AUI BER per PHY** (Measured): 2E-5, 4E-5 (assuming precoding used for a = 0.75)
- Latency for RS-FEC follows the model used in brown 3dj optx 01b 230413.

Note: The soft-decision decoder used in this presentation was a textbook Chase-II decoder, with 42 test patterns.

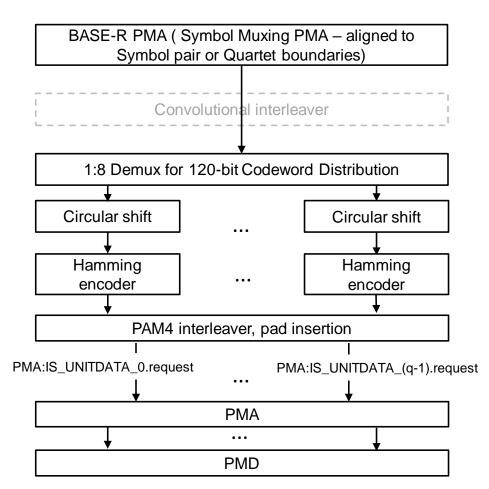
BER Threshold and Latency for Different FEC Schemes

Rate	Rate per lane	RS-FEC codeword interleaving	PCS latency (incl. Outer FEC) (ns)	Inner FEC latency (ns)	Cl depth	CI latency (ns)	Total Latency (ns)	AUI DER0 per PHY	AUI Measured BER per PHY	AUI error extension probability	Available random BER for optics.
100GE	100G	2	139.4	NA		139.4		2E-5	0.75	2.40E-04	
200GE	100G	2	88.2	NA			88.2		2E-5	0.75	2.40E-04
	200G	4	139.4	NA (FECo mode)			139.4		2E-5	0	2.60E-04
			139.4						4E-5	0.75	2.35E-04
			139.4	15	Bypace	pass O	154.4	2.67E-5	2E-5	0	3.65E-03
				15	Буразз				4E-5	0.75	3.50E-03
			139.4	15	12-way	280	434.4		2E-5	0	5.00E-03
			139.4						4E-5	0.75	4.90E-03
400GE	100G	2	62.6		NA		62.6		2E-5	0.75	2.40E-04
	200G	4	88.2	NA (FECo mode)			88.2		2E-5	0	2.60E-04
				117			00.2	2.67E-5	4E-5	0.75	2.35E-04
			88.2	15	Bypass	0	103.2		2E-5	0	3.65E-03
									4E-5	0.75	3.50E-03
			88.2	15	12-way	140	243.2		2E-5	0	5.00E-03
									4E-5	0.75	4.90E-03
800GE	100G	4	62.6		NA		62.6		2E-5	0.75	2.40E-04
	200G	4	62.6	NA (FECo mode)			62.6		2E-5	0	2.50E-04
						C)	02.0		4E-5	0.75	2.25E-04
			62.6	15	Bypass	0	77.6	2.67E-5	2E-5	0	3.55E-03
									4E-5	0.75	3.40E-03
			62.6	15	12-way	56	133.6		2E-5	0	5.00E-03
				10					4E-5	0.75	4.80E-03
1.6TE	200G	4	49.8	NA (FECo mode)		49.8		2E-5	0	2.50E-04	
					20000			2.67E-5	4E-5	0.75	2.25E-04
			49.8	15	Bypass	0 25.6	64.8 90.4		2E-5	0	3.55E-03
					-, , , , , , , , , , , , , , , , , , ,				4E-5	0.75	3.40E-03
			49.8	15 1	12-way				2E-5	0	5.00E-03
			1910	1.5	12 Way				4E-5	0.75	4.80E-03

Burst Error Analysis

 Independent studies have analyzed Type-2 FEC w/o CI, and with the 4-way interleaving of RS(544,514) FEC, 2E-3 – 3E-3 pre-FEC BER can be allowed for bursty channels based on different soft-decoding algorithms to maintain 1E-13 BER objective.

Req. SNR for 6.2e-13 FER	Penalty wrst Full CI	Net Coding gain vs (HD DFE)	Req. Inner code Input BER						
14.5	0	3.17	4.85E-03	RS-FEC codeword	Inner FEC	AUI DER0 per PHY	AUI error extension probability	Optical PMD 1-tap DFE	Optical PMD BER incl. bursts
14.75	0.25	2.92	3.60E-03	interleaving					
14.85	0.35	2.82	3.00E-03	4-way	Yes*, w/o Cl	2.67E-5	0.75	0.5	2E-3
15.2	0.7	2.47	2.20E-03	4-way	No	2.67E-5	0.75	0.5	3.3E-4
17.95	3.45	0		<u>* This work</u> ,	basic C	hase-II (decoding.		
	6.2e-13 FER 14.5 14.75 14.85 15.2	6.2e-13 FER Full Cl 14.5 0 14.75 0.25 14.85 0.35 15.2 0.7	6.2e-13 FER Full CI (HD DFE) 14.5 0 3.17 14.75 0.25 2.92 14.85 0.35 2.82 15.2 0.7 2.47	6.2e-13 FER Full CI (HD DFE) Input BER 14.5 0 3.17 4.85E-03 14.75 0.25 2.92 3.60E-03 14.85 0.35 2.82 3.00E-03 15.2 0.7 2.47 2.20E-03	6.2e-13 FER Full CI (HD DFE) Input BER 14.5 0 3.17 4.85E-03 RS-FEC codeword interleaving 14.75 0.25 2.92 3.60E-03 4-way 14.85 0.35 2.82 3.00E-03 4-way 15.2 0.7 2.47 2.20E-03 * This work,	6.2e-13 FER Full CI (HD DFE) Input BER 14.5 0 3.17 4.85E-03 RS-FEC codeword interleaving Inner FEC 14.75 0.25 2.92 3.60E-03 4-way Yes*, w/o CI 14.85 0.35 2.82 3.00E-03 4-way Yes*, w/o CI 15.2 0.7 2.47 2.20E-03 * This work, basic C	6.2e-13 FER Full CI (HD DFE) Input BER 14.5 0 3.17 4.85E-03 RS-FEC codeword interleaving Inner FEC AUI DERO per PHY 14.75 0.25 2.92 3.60E-03 4-way Yes*, w/o CI 2.67E-5 14.85 0.35 2.82 3.00E-03 4-way No 2.67E-5 15.2 0.7 2.47 2.20E-03 * This work, basic Chase-II of	6.2e-13 FERFull CI(HD DFE)Input BER14.503.174.85E-03Inner codeword interleavingAUI DERO per PHYAUI error extension probability14.750.252.923.60E-03Inner score of the score	6.2e-13 FERFull CI(HD DFE)Input BER14.503.174.85E-0314.750.252.923.60E-0314.850.352.823.00E-0315.20.72.472.20E-03


<u>riani_3dj_01a_2303.pdf</u>, $\alpha = 0.75$, SOVA + Chase decoding

Advantages of Bypassing CI

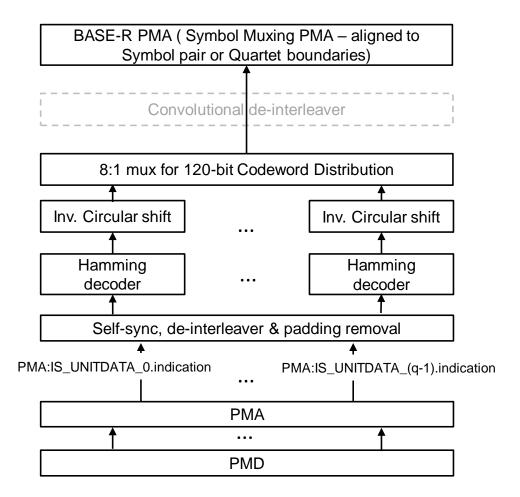

- With ~15ns added latency for inner FEC, the pre-FEC BER threshold for optical PMD can be relaxed by 15x compared to FECo (KP4 FEC only).
 - 3.5E-3 / 2.35E-4 = 14.89x
 - 3.4E-3 / 2.25E-4 = 15.11x
 - Under bursty cases, FECi w/o CI still maintains > 6x advantage over FECo for 1-tap DFE of 0.5.
- Bypassing CI does not affect the baud rate on the PMD.
 - No new PHYs will be introduced.
 - <u>Whether the CI is bypassed or not can be established by the PMD</u>, to avoid complications in PMD specs.
 - i.e. CI is bypassed for DR, (and probably FR, too); LR operates with CI.
- Bypassing CI does not affect how the padding is inserted or detected.
 - Padding can still be identified using the adopted method.

Illustration for Inner FEC w/o CI

Transmit path

Receive path

Summary

- For latency/power sensitive applications with good BER floor, we recommend to use the inner FEC without CI.
 - Inner FEC sublayer latency can be drastically reduced, to the equivalent of ~3 meters of fibre.
 - CI is also a key contributor to power consumption.
- CI-bypass is proposed for the following PMDs in P802.3dj:
 - 200GBASE-FR1
 - 400GBASE-DR2-2
 - 800GBASE-DR4-2, 800GBASE-FR4, 800GBASE-FR4-500
 - 1.6TBASE-DR8-2
- Data rate is not affect whether using the CI or not.
 - Padding insertion mechanism is not affected, either.

Thank you!