Analysis of C2M updated Channels for 200Gbps - up to $34 d B$ channels

Upen Reddy Kareti, David Nozadze, Pirooz Tooyserkani, Yi Tang Cisco Systems Inc.

C2M Channel Analysis -Goals

- Find a minimal reference Serdes without MLSE feature that meets the needs of updated channels based on 2 RU, 64 port, 512 Radix, 1.6T/port system design
- Cover both Cabled_host and PCB_host channels with "Max feasible" skew version
- No Skew and Excessive skew for comparison only

C2M Channel Analysis - Setup

- Simulation setup Includes
>Both types of packages (Type A and Type B)
$>$ Mixing of Package types for
>Package variations
- Host Silicon package trace lengths - 8 mm to 45 mm
- Module Silicon package trace lengths - $4 \mathrm{~mm}-12 \mathrm{~mm}$
>Cover all Cabled_host and PCB_host channels
- All skew version(s)
$>$ Refer included COM table for other details of Reference Serdes.

C2M Channel Analysis - PKG B

C2M Channel Analysis - All conditions

Includes:

Packages A and B
Host side: $8 \mathrm{~mm}-45 \mathrm{~mm}$
Module side: $4 \mathrm{~mm}-12 \mathrm{~mm}$
all Skew versions of channels
No skew, Max_tolerable and excessive,

Ref Serdes:

TX:
A_v: 0.45 V with $\mathrm{Rd}=50 \mathrm{Ohm}$
4 pre-tap
CTLE:
gDC $=-10 \mathrm{~dB} ; \mathrm{gDC}$ _HP $=-4 \mathrm{~dB}$
RX:
1 Tap DFE
40 post tap FFE: 8 fixed +8 banks of 4 floating up to 80 Ul 4 pre-tap

Observation: CTLE is adopting to lower range of capability. gDC: upto -7 dB

C2M Channel Analysis - all conditions for channels >30 dB

C 2 M channels with Pkg A and Pkg B variations - Bump2 Bump Loss >30 dB

This type of ref. Serdes is covering up to 32 dB of cabled host channels and up to 34 dB of PCB host channels

C2M Channel Analysis - PKG B with MLSE

Includes:

Packages B
Host side: 45 mm
Module side: 8 mm
all Skew versions of channels :
No skew, Max_tolerable and excessive,

Ref Serdes (with MLSE):

TX:
A_v: 0.413 V with $\mathrm{Rd}=50 \mathrm{Ohm}$
4 pre-tap
CTLE:
gDC $=-10 \mathrm{~dB} ; \mathrm{gDC}_{-} \mathrm{HP}=-4 \mathrm{~dB}$ RX:
1 Tap DFE
40 post tap FFE: 8 fixed +8 banks of 4 floating up to 60UI
4 pre-tap

C2M Channel Analysis with MLSE - All conditions

Includes:
Packages A and B
Host side: $8 \mathrm{~mm}-45 \mathrm{~mm}$
Module side: $4 \mathrm{~mm}-12 \mathrm{~mm}$
all Skew versions of channels :
No skew, Max_tolerable and excessive

Ref Serdes (with MLSE, max benefit capped at 0.75 dB): TX:
A_v: 0.413 V with $\mathrm{Rd}=50 \mathrm{Ohm}$ 4 pre-tap
CTLE:
gDC $=-10 \mathrm{~dB} ;$ gDC_HP $=-4 \mathrm{~dB}$
RX:
1 Tap DFE
40 post tap FFE: 8 fixed +8 banks of 4 floating up to 60UI 4 pre-tap

Observation: CTLE is adopting to lower range of capability. gDC : upto -7 dB

C2M Channel Analysis w MLSE - all conditions for channels >30 dB

C2M channneels with Pkg A and Pkg B variations

This type of ref. Serdes is covering up to 32 dB of cabled host channels and up to 34 dB of PCB host channels

Conclusions

- For varying package conditions and max feasible system intrapair skew conditions, the same reference Serdes can support:
- Cabled_host channels up to 32 dB
- PCB_host channels up to 34 dB
- Recommend C2M Electrical Interfaces target max Loss up to 34dB.
- There is room for further simplification of Ref. Rx or additional noise margins based on future work - like the implementation of MMSE algorithms etc..

```
Ref Serdes without MLSE:
TX:
A v: 0.45V with Rd=50 Ohm
4 pre-tap
CTLE:
gDC =-10 dB; gDC_HP = -4 dB
RX:
1 Tap DFE
40 post tap FFE: 8 fixed+ 8 banks of 4 floating up to 80UI
4 pre-tap
```

```
Ref Serdes (with MLSE, max benefit capped at 0.75dB):
TX:
A_v: 0.413V with Rd =50 Ohm
4 pre-tap
CTLE:
gDC =-10 dB; gDC_HP =-4 dB
RX:
1 Tap DFE
40 post tap FFE: 8 fixed+ 8 banks of 4 floating up to 60UI
4 pre-tap
```


Backup

ble 93A-1 parameters			
Parameter	Setting	Units	Information
f.b	106.25	GBd	
f min	0.05	GHz	
Delta ff	0.01	$\mathrm{GHz}^{\text {G }}$	
c_d	${ }^{[0.4 e-4} 0.9 e-41.1$ e-4 $-0.4 e-40.9 e-4$	nF	[TXRx]
Ls	[0.130.15 0.14; 0.13 0.15 0.14]	nH	[TXRX]
c.b	[0.33-4 $0.3 \mathrm{e}-4]$	nF	[TXRX]
2_p select	[12345678910111213141516		[testcasesto run)
2_p (TX)		mm	[testcases]
2_p (NEXT)	[444444888888121212121212; $0000000000000000 ; 000$ [0000000000]	mm	[testcases]
2_p (fExT)		mm	[testcases]
2_p (RX)	$\left[\begin{array}{l}{[44444488888121212121212 ;} \\ 0000000000000000 ; 0000 \\ 00000000000000 ; 00000000\end{array}\right.$ $00000000000000 ; 00000000$ 0000000000]	mm	[testcases]
PKG Tx FFE Preset	-		
C.p	[0.5e-4 0.5-4]	nF	[$7 \times \mathrm{KX}$]
${ }_{\text {R }}$,	${ }^{50}$	Ohm	
$\frac{\mathrm{R}}{\mathrm{R}} \mathrm{d}$	${ }_{\text {[50 50] }}^{0.45}$	Ohm	[$\mathrm{T} \times \mathrm{RXX}$]
$\begin{aligned} & \text { Av } \\ & \text { Af fe } \end{aligned}$	0.45	v	vp/ff=
A_ne	0.45	v	
\llcorner	4		
M	32		
filterand Eq			
${ }_{\text {f }}^{\text {c }}$ (0	0.75	*fb	min
c-1)	[-0.4:0.0.02:0.0.3]	[-0.4:4:002:0]	[min:step:max]
cl-2)	[0:00.02:0.0.04]	[0:00.02:0.0.2]	[min:step:max]
c(-3)	[-0.04:0:022:0]	-0.004:0.02:0]	[min:step:max]
c-4)	[-0.02:0:02: 0 :04]	$0_{0}^{[0.02: 022: 0.0 .}$	[ministep:max]
c(1)	[-0.04:0:02:0:04]	$\begin{gathered} 1- \\ \text { 0.12:02:0.0 } \\ 4] \end{gathered}$	[min:step:max]
N b	1	u	
$\mathrm{b}_{\text {max }}(1)$	1		As/dffel
$\frac{\mathrm{b} \max (2 . . . N-\mathrm{N})}{\mathrm{b} \min (1)}$	[0.30.2**ones $(1,22]]$		$\text { As/dffe2... } \mathrm{N} \text { b }$
$\mathrm{b}^{\min (2 \ldots \mathrm{~N} \cdot \mathrm{~b})}$	$\left[-0.2-0.2^{*}\right.$ ones $\left.[1,22]\right]$		As/dffe2... ${ }^{\text {b }}$
g_Dc	[-10:1:0]	dB	[min:step:max]
f_	42.5	GHz	
$\mathrm{f}_{\mathrm{p} 1}$	42.5	GHz	
$\mathrm{f}_{\mathrm{p}} \mathrm{p}$	106.25	GHz	
			[min:step:max]
${ }_{\text {f. HP } . \text { PZ }}$	1.328125	GHz	
Butterworth	1	logical	include infr
Raised Cosine	0	logical	include in fr F
RC Start	$6.70 E+10$	Hz	start freafor RCO
RC.end	7.97E +10	Hz	end fregfor RCos
ffe_pre_tap_len	4	UI	
ffe post tap len	8	UI	
ffe_tap_step_size	0		
${ }^{\text {ffe main cursor min }}$	0.7		
Afe post tap1 1 max	0.7		
ffe tapn max	0.7		
ffe backoff	0		
Sample adiustment	[00]	phase	

1/0 control			Table $93 \mathrm{~A}-3$ parameters		
diagnostics	1	logical	Parameter	Setting	Units
DIIPPAY_WINDOW	1	logical	package_ti gamma0 al a2	[00.00084550 .000340225]	
CSV REPORT	1	logical	package til tau	0.00648805	$\mathrm{ns} / \mathrm{mm}$
RESULT DIR	.\|results\C2M B \{date] $^{\text {a }}$		package_Z.	[9292; 70 70; 80 80; 100100$]$	Ohm
SAVE_FIGURES	0	logical			
Portorder	[1324]		Parameter	Setting	
RUNTAG	C2M_B		board_t1 gamma0 al a a	[06.44084e-4 3.6036e-05]	$1.5 \mathrm{db} / \mathrm{in}$ @ 566
COM_CONTRIBUTION	0	${ }^{\text {logical }}$	board_tı_tau	5.790E-03	ns/mm
Operational			board_z_c	100	ohm
ERL Pass treshold	9.7	dB	z_bp (TX)	125	mm
com Pass threshold	3	db	z_bp (next)	0	mm
VEC Pass threshold	10.69073041	db	2_bp (FEXT)	125	mm
DER 0	2.67E-05		$2 \mathrm{bp}(\mathrm{RX})$	0	mm
$\mathrm{T}_{\text {r }}$	4.00-03	ns	c.0	[0.2e-40]	nF
FORCE TR	1	logical	C 1	[0.2e-40]	nF
PMD_type	c2acom		Include PCB	0	logical
${ }_{\text {EW }}$	1				
TDR and ERL options		logical			
TDR	1	logical	Seletions (rectangle, gaussian,dual_rayleigh,trian gle		
ERL	1	logical	Histogram_Window_Weight	gaussian	selection
ERL ONLY	0	ns	ar	0.02	UI
TR_Tor	0.01				
N	2000	logical			
TDR_ Butterworth	1		ICN parameters		
beta x	0		${ }_{\text {f }} \mathrm{f}$	0.594	${ }_{\text {Fb }}$
	0.618	UI	${ }_{f}^{f} \mathrm{f}$	0.594	${ }_{\text {Fb }}$
N bx	0		\ddagger	79.688	GHz
fixture delaytime	[00]		A_ft	0.450	v
Tukey Window	1		A nt	0.450	v
Noise, jitter		$\cup 1$			
${ }_{\text {Sigma }}^{\text {A }}$ D	${ }_{0}^{0.01}$	$\xrightarrow[\mathrm{N} \times 2 / \mathrm{GH2}]{\mathrm{Ul}}$	Floating Tap Control $\mathbf{N ~ b g}$	8	012 or 3 groups
eta 0	6.00E-09	dB	N bf	4	taps pergroup
SNR_TX	33		N_f	80	tans
R_LM	0.95		bmaxg	0.2	floating taps
$\underbrace{\text { 11-2022 }}_{\text {highlighted are undere-consideration }}$			B float RSS MAX	0.1	rss tail tap limit
			N_tail_start	61	(U) start of tail t
MLSE	1	\square	Receivertesting		
	。		${ }^{\text {RX CALIBRATION }}$ Sigma BBNstep	$\frac{0}{5.00 E-03}$	$\stackrel{\text { logical }}{\mathrm{V}}$

Trable 93A-1 parameters			
Parameter	Setting	Units	Information
f b	106.25	GBd	
$f_{\text {f min }}$	0.05	GHz	
Delta f	0.01	GHz	
c_d	$\begin{aligned} & {[0.4 e-40.9 e-4 \text { 1.1.e-4-4.04e-4 0.9e-4 }} \\ & 1.1 e-4] \end{aligned}$	nF	[TX XX]
Ls	[0.130.15 0.14; 0.13 0.15 0.14]	nH	[TXRX]
c b	[0.3e-4 0.3e-4]	nF	[TXRX]
2_p select	[1234567891011121314151617 18 [[test casestor run]
2_p (TX)	[8152430404581524304045815 243040 45;1.8 1.81 .81 .81 .81 .81 .81 .8 $1.81 .81 .81 .81 .81 .81 .81 .81 .81 .8]$	mm	[testcases]
2_p (NEXT)	[444444888888121212121212;	mm	[testcases]
2_p (FEXT)	[8152430404581524304045815 $24304045 ; 1.81 .81 .81 .81 .81 .81 .81 .8$ $1.81 .81 .81 .81 .81 .81 .81 .81 .81 .8]$ $[484$	mm	[testcases]
$2 \mathrm{zp}(\mathrm{RX})$	$[444444888888121212121212 ;$ $00000000000000000]$	mm	[testcases]
PKG_Tx_FFE_preset	-		
C ${ }^{\text {p }}$	[0.5e-4 0.5-4]	nF	[TXRX]
R_0	50	Ohm	
R_d	[5050]	Ohm	[TXRX]
Av	0.45	v	vp/vf=
A fe	0.45	v	$\mathrm{vp} / \mathrm{lf}=$
A_ne	0.45	v	
L	4		
M	32		
filterand Eq			
$\mathrm{f}_{\mathrm{s}} \mathrm{r}$	0.75	*fb	
c(0)	0.54		min
c-1)	[-0.4:0.0.02:0.0.3]	[-0.4:0.0.02:0]	[min:step:max]
cl-2)	[0:00:02:00.04]	[0:000:02:0.2]	[min:step:max]
cl-3)	[-0.04:0.02:0]	[-0.04:00.02:0]	[min:step:max]
c(-4)	[-0.02:00:02:0.04]	$\begin{array}{\|c\|c\|c\|c\|c\|c::c\|c\|:\|c\|} \hline 02] \end{array}$	[min:step:max]
c(1)	[-0.04:0:02:0.04]	$\begin{array}{c\|c\|} \hline \text { I- } \\ \hline .12: 00: 0.00 \\ 4] \end{array}$	[min:step:max]
N_b	1	UI	
$\mathrm{b}_{\max (1)}$	1		As/dffel
$\mathrm{b}_{\text {max }}(2 . \ldots \mathrm{N}-\mathrm{b})$	[0.30.2 ${ }^{\text {* }}$ ones $\left.(1,22)\right]$		As/dffe2... $\mathrm{N}^{\text {b }}$
b min(1)	0		As/diffe1
$\mathrm{b}^{\min }$ (2...N-b)	$\left[-0.2-0.02^{*}\right.$ ones $\left.(1,22]\right]$		As/dffe2...N $\mathrm{b}^{\text {b }}$
g_dc	[-20:1:0]	dB	[min:step:max]
$\mathrm{f}_{\text {- }}$	42.5	GHz	
$\mathrm{f}_{\mathrm{f}} \mathrm{p}$	42.5	GHz	
$\mathrm{f}_{\mathrm{p}} \mathrm{p}$	106.25	GHz	
g_DC. HP	[-6:1:0]		[min:step:max]
f HP PZ	1.328125	GHz	
Butterworth	1	logical	include infr
Raised_Cosine	0	logical	include infr
RC. Start	$6.70 ¢+10$	Hz	start freqfor RCos
RC _ end	7.97E +10	Hz	end freqfor RCos
ffe_pre_taplen	4	UI	
ffe post_ tap_len	8	U	
ffe tap step size	0		
ffe_main_cursor_min	0		
ffe_pre_tap1_max	0.7		
ffe_ post_ tap1_max	0.7		
ffe tapn_max	0.7		
ffe_backoff	0		
Sample adjustment	[00]	phase	

1/0 control		
DIAGNOStics	1	logical
DIIPPLAY WINDOW	1	logical
CSV_REPORT	1	logical
RESULT_ DIR		
SAVE_FIGURES	0	logical
Port Order	[1324]	
RUNTAG	C2M A	
COM CONTRIBUTION	0	logical
Operational		
ERLPass threshold	9.7	dB
com Pass threshold	3	db
VEC Passthreshold	10.69073041	db
DER_0	2.677-05	
Tr	4.00E-03	ns
FORCE_TR	1	logical
PMD_type	C2Mcom	
EW	1	
TDR and ERL options		logical
		logical
ERL	1	logical
ERL_ONLY	0	ns
TR TOR	0.01	
N	2000	logical
TDR_Butterworth	1	
beta_ X	,	
rho \times	0.618	
TDR_W_TXPKG	0	UI
N_bx	0	
fixturedelaytime	[00]	
Tukey Window	1	
Noise,jitter		$u 1$
sigma_ RJ	0.01	u
A.DD	0.02	N2/GH2
eta_ 0	6.00--09	dB
SNR_TX	33	
R_LM	0.95	
11-2022 BenAftsi pk g	022.065.02	
highlighted are underre-consideration		
MLSE	1	

AC_CM_RMS

Parameter	Setting	
board tl gamma0 a1 a2	$[06.440844-43.6036 e-05]$	$1.5 \mathrm{db} /$ in @ 966

$5.790 E-03$	ns $/ \mathrm{mm}$	
board_z_c	100	ohm

| board_Z_c | 100 | ohm |
| :---: | :---: | :---: | mm | $\frac{\mathrm{mm}}{\mathrm{nF}}$ |
| :--- |
| nF | $\frac{\mathrm{nF}}{\text { logical }}$

ICN parameters		
fv	0.594	Fb
ff	0.594	Fb
fn	0.594	Fb
f-2	79.688	GHz
A_ft	0.450	v
A nt	0.450	v

Floating Tap Control		
N bg	8	012 or 3 groups
N bf	4	taps per group
N_f	80	UI span for floatin
bmaxg	0.2	max DFE value for
B float RSS_MAX	0.1	rss tail tap limit
N_tail_start	61	(UI) start of tail ta
Receivertesting		
RX_CALIBRATION	0	logical
Sigma BBNstep	5.00-03	v

