SMF Optical Channel Model Proposal

Roberto Rodes, Coherent

Chris Cole, Coherent

1

- This presentation is a proposal for an optical channel model to use in DR, FR and LR4 applications
- This presentation does not provide spec on 800G-LR4 (or other PMD), it proposes how to build a channel model
- This presentation also reviews recently received ITU-T liaison response

References

Previous IEEE discussions on developing statistical fiber channel model:

Statistical analysis on fiber zero dispersion wavelength (ZDW) and slope:

- <u>cole_3dj_01b_2305</u>
- ferretti_3dj_optx_01b_230615
- parsons 3df 01a 2211
- johnson_3dj_01a_2307
- <u>liu_3dj_01a_2307</u>

Optical link segmentation:

- <u>liu_3dj_optx_01_230615</u>
- <u>liu_3dj_01a_2307</u>

How is Dispersion currently specified?

Formula to calculate Dispersion_{min}: distance $\times (SO_{max} / 4) \times \lambda \times [1 - (ZDW_{max} / \lambda)^4]$

where $SO_{max} = 0.092 \text{ ps.nm}^2\text{km}$ and $ZDW_{max} = 1324\text{ nm}$ from ITU-T fiber attributes

Dispersion^a (ps/nm) Optical Insertion PMD type return mean lossb

Maximum

 $0.011625 \times \lambda \times [1-(1300 / \lambda)^4]$

 $0.046 \times \lambda \times [1 - (1300 / \lambda)^4]$

 $0.230 \times \lambda \times [1 - (1300 / \lambda)^4]$

Minimum

 $0.011625 \times \lambda \times [1-(1324 / \lambda)^4]$

 $0.046 \times \lambda \times [1 - (1324 / \lambda)^4]$

100GBASE-LR1 0.230× λ ×[1–(1324 / λ)⁴]

100GBASE-DR

100GBASE-FR1

Table 140–10a—Transmitter compliance channel specifications

^a The dispersion is measured for the wavelength of the transmitter under test (λ in nm). The coefficient assumes 500 m for 100GBASE-DR, 2 km for 100GBASE-FR1, and 10 km for 100GBASE-LR1.

Until now, dispersion spec scales linearly with distance. i.e.: LR equation is 5 times FR_equation (No link segmentation)

- FR : 2 x 0.023 = 0.046
- LR: 10 x 0.023 = 0.230

Graphical representation of the dispersion formula

Max

DGD

0.5 ps

0.8 ps

0.8 ps

loss^c

15.5 dB

17.1 dB

15.6 dB

Minimum

Minimum

Minimum

How is Dispersion currently specified: Graphical representation.

IEEE specifies dispersion by the intersection of of ZDW_{max} and slope_{max}

Why IEEE channel model dispersion could be improved?

- Dispersion is a function of ZDW and slope, with each expecting to follow a gaussian-like distribution.
- Therefore, Dispersion is expected to have a multivariate normal distributions (ellipse-shape confidence region)

- Using the rectangle corner results on an overly pessimistic corner case spec
- We are fitting a square peg into a round hole
- This triggered the IEEE to collect data to build a statistical channel model, and to write a Liaison to ITU last November for statistical data

ITU-T liaison review

- ITU provided a min/max dispersion fitting function for 2, 10, 20, 30, and 40 km <u>SG15-LS86 Att1 TD248-GEN</u>
- This presentation focus on 2 and 10km since these are the current IEEE .3dj objectives
- 2km fitting is based on a single segment link
- 10km fitting is based on four segments of 2.5km
- Fitting function is done for a 99.99% confidence

ITU-T liaison review: Single segment fitting

- 99.99% confidence
- single segment link

- 100% < 99.99%, therefore some reduction was expected. ITU-T fitting does not show it</p>
- ITU fitting does not meet its own spec: ZDW range outside 1300-1324nm
- This is a clear problem in the methodology that we should ask to fix in the Liaison

ITU-T liaison review: Single segment fitting

- 99.99% confidence
- single segment link

Single segment ITU statistical fitting does not meet ITU own spec Still fitting a square peg on a round hole

Can IEEE define an optical channel model...

- 1) ... based on ITU-T fiber specs, but still reasonable according to physics (multivariate normal distribution)
- 2) ...for high volume datacenter specifications to best supports Ethernet applications
- 3) ... transparent, with input parameters that are PMD dependent, i.e. wavelengths, link segmentation, confidence level

Can IEEE define an optical channel model...

- ... based on ITU-T fiber specs, but still reasonable according to physics (multivariate normal distribution) 1)
- ... for high volume datacenter specifications to best supports Ethernet applications 2)
- 3) ... transparent, with input parameters that are PMD dependent, i.e. wavelengths, link segmentation, confidence level

-2.6

-2.0

1.4

0.8

0.095

0.090

underestimate when

segments from same vendor

Previously proposed models:

Accounts for same vendor segments

0.080

0.085

Slope (ps/(nm2 x km))

- A bit more complex
- Not as conservative as ITU-T limits

Can IEEE define an optical channel model...

- 1) ... based on ITU-T fiber specs, but still reasonable according to physics (multivariate normal distribution)
- 2) ... for high volume datacenter specifications to best supports Ethernet applications

3) ... transparent, with input parameters that are PMD dependent, i.e. wavelengths, link segmentation, confidence level

This proposal:

with 99.99% (~4 sigma)

12

Not as conservative as ITU-T limits

 underestimate when segments from same vendor

The Proposed Channel Model:

- Is a multivariate normal distribution, not a rectangle with a corner
- Has two distributions, to account for vendors with a shifted distribution in opposite directions
- The distribution is pushed all the way to max/min ZDW and Slope spec with 99.99%

For Minimum dispersion:

- ZDW: mean= 1316, std= 2
- Slope: mean= 0.084, std= 0.002

For Maximum dispersion:

- ZDW: mean= 1308, std= 2
- Slope: mean= 0.084, std= 0.002 ¹³

Optical links with Link Segmentation

Link segmentation: When? Improves what?

- Longer optical links are built in segments
- Link segmentation reduces the dispersion variance
- Dispersion reduction depends on standard deviation.
 See annex for more.

How to apply link segmentation with channel model?

Example steps to calculate minimum dispersion spec:

- 1. MonteCarlo analysis with the proposed ZDW and Slope multivariate normal distribution
- 2. Calculate dispersion for shortest/longest wavelength in the plan. i.e: 1294.56nm for LWDM4
- 3. Average dispersion among number of segments
- 4. Select minimum value within 99.99%

ITU-T liaison review: 4x2.5km fitting

- 99.99% confidence
- Link segmentation: 4 x 2.5km segments

ITU-T fitting, even after averaging effect of link segmentation, does not completely meet ITU own specs

Results comparison: single segment

ITU statistical fitting for **single segment** link

This proposal:

- Fixes the problems the ITU fitting has regarding ZDWmax out of spec ٠
- Show a modest expected reduction in dispersion due to 99.99% confidence ٠

Results comparison: four segments

This proposal:

- Fixes the problems the ITU fitting has regarding ZDWmax out of spec
- Show a modest expected reduction in dispersion due to 99.99% confidence and additional improvement due to link segmentation

How can we specify it?

Using same approach than in <u>stassar 3dj 01 2401</u> we can calculate effective ZDW and slope to reuse specification format

The effective ZDW and SO are used in the IEEE spec to obtain statistical distribution values while reusing specification methodology

What all comes down to writing the spec

For every PMD, IEEE specifies in a subclause the zerodispersion wavelength range to derive dispersion

Peter ITU analysis in stassar 3dj 01 2401

Distance [km]	Slope S₀ for min CD [ps/nm²km]	ZDW/λ ₀ [nm]	Slope S ₀ for max CD [ps/nm²km]	ZDW/λ ₀ [nm]
Current	0.092	1324	0.092	1300
2	0.0864	1326.1	0.0864	1299.0
10	0.0856	1324.2	0.088	1305

Comparison of this approach vs ITU fitting

2km	Slope S0 for min CD	ZDWmax for min CD	Slope S0 for max CD	ZDWmin for max CD
Peter analysis of ITU	0.0864	1326.1	0.0864	1299.0
This Proposal	0.086	1323.4	0.086	1300.8

10km	Slope S0 for min CD	ZDWmax for min CD	Slope S0 for max CD	ZDWmin for max CD
Peter analysis of ITU	0.0856	1324.2	0.088	1305
This Proposal	0.086	1319.7	0.086	1304.5

Very similar values, expect for those that ITU fitting would require for the IEEE writing fiber spec that violates ITU spec ZDW (1300-1324nm)

800GBASE-LR4 specs

The proposed optical channel would result in a spec dispersion limits for 800GBASE-LR4 of:

Option A: Independent ZDW and Slope

DMD type	Dispersion (ps/nm)		
Pivid type	Minimum	Maximum	
800GBASE-LR4	-21.9	4.9	

Option B: Alternatively, even a more conservative approach could be adopted using positive correlation of ZDW and Slope

DMD type	Dispersion (ps/nm)		
Pivid type	Minimum	Maximum	
800GBASE-LR4	-22.4	4.9	

Conclusions

- This presentation proposes an IEEE statistical model for optical channels based on ITU-T ZDW and slope limits, while proving a transparent model for the task force to drive its own analysis.
- Presents a complete step-by-step methodology to evaluate any wavelength plan for a given fiber length, link segmentation and confidence level
- Calculates the effective ZDW and Slope values to continue using current specification format
- If further data from ITU-T is received, this model is clear, and can be easily updated based on any new input

Appendix

Analysis of Link segmentation improvement. Part 1

Link segmentation improvement depends on the ZDW and Slope standard distributions

Analysis of Link segmentation improvement. Part 2

ITU fitting for 10km min dispersion shows:

- Dispersion_{min} of ~-2.6 ps/(nm km) @1294.56nm with 99.99% confidence
- Dispersion_{min} increase due to link segmentation of ~0.2ps/(nm km)
- This would be achieved with a ZDWstd = 1nm and ZDWmean = 1320 1322.5 nm

Impact of ZDW – slope correlation. Part 1

Based on liu_3dj_01_2401, ZDW and S0 have a inverse correlation of -0.75

Impact of ZDW – slope correlation. Part 2

Just for curiosity, these would be simulation results on a worse case scenario if the ZDW and Slope had positive correlation

Maximum dispersion for LWDM

Maximum dispersion values for the longest LWDM4 wavelength. The results is even slightly larger then ITU-T fitted function

Maximum dispersion for LWDM. Part2

Available data indicates ZDW fiber distributions tent to be towards the longer wavelength, therefore, assuming a 5-sigma margin (instead of 4) to the shortest ITU ZDW_{min} could be reasonable

