Further on Possibilities of the MLSE Proposal

Hossein Shakiba Huawei Technologies Canada January 2024

Outline

- Introduction
- Summary of the Proposal
- Previous Contribution
- Equation Options
- Test Channels
- Com Configuration and Version
- Test Channel Results
- White or Colored Noise?
- Actual or Gaussian Noise?
- Summary and Conclusions
- Backup Slides (Noise Shaping and Correlation)

Introduction

- Defining MLSE for COM reference receivers was highlighted as one of the priorities in phase 1 (<u>lusted_3dj_elec_01_231207.pdf</u>)
- 1st priority is to agree if MLSE representation is needed to be a part of the reference receiver
- January 11th 2024 dj ad hoc Straw Polls 6-9 were favorable particularly for CR/KR:

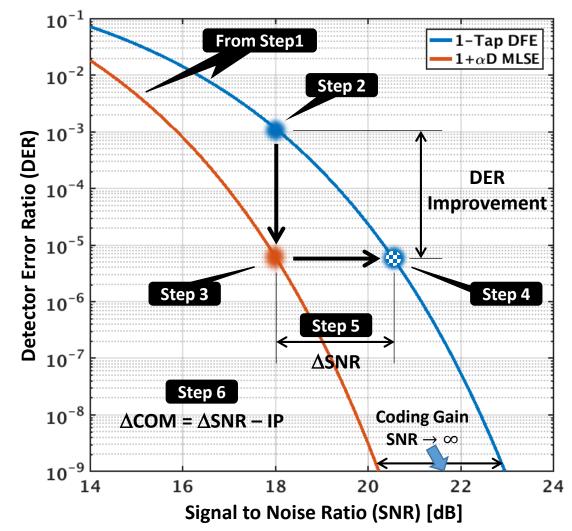
Introduction

- 2nd priority is to find the best practical approach to achieve the 1st goal
- Considered options:
 - A. Use MLSE \triangle COM calculations based on the existing proposal
 - B. Use MLSE coding gain as a rough estimate
 - C. Relax COM margin by a constant amount
- January 11th 2024 dj ad hoc Straw Poll 10 favored Option A:

For the 200G/lane electrical interfaces having MLSE capability, the MLSE solution approach that I prefer is:

A. Include MLSE COM calculations based on shakiba_3dj_elec_01_240111, slide 5 with MLSE implementation penalty TBD)

B. Use MLSE coding gain as a rough estimate (i.e. shakiba_3dj_elec_01_240111, slide 6 middle graph and equation with MLSE implementation penalty TBD)


C. Relax COM margin by a fixed amount (exact amount is TBD) (choose one)

Results (all): A: 32, B: 2, C: 7

• Next step is to further explore possibilities offered by Option A

Summary of the Proposal (Option A)

- In its nutshell, the proposed method calculates SNR advantage if the 1-tap DFE is replaced with a 1+αD MLSE (α is the DFE tap)
- \bullet The proposal uses analysis to derive equations needed to calculate this $\Delta {\rm SNR}$
- \bullet $\Delta {\rm SNR}$ is calculated depending on the channel and noise characteristics
- The proposal offers equation options based on the thoroughness vs. complexity trade-off
- An MLSE implementation penalty (IP) (method and value TBD) de-rates Δ SNR to yield Δ COM

Previous Contributions

• For details of the analysis and derivation of equations refer to:

Date	Content	Reference Contribution
November 2022	Original Proposal	shakiba_3df_01a_2211.pdf
January 2023	Further Details	shakiba_3dj_01_230116.pdf
February 2023	Recap	shakiba_3dj_elec_01_230223.pdf
February 2023	First COM Matlab Code	mellitz_3dj_elec_01a_230223.pdf
April 2023	First Update (U1.a, U1.b, U1.c)	shakiba_3dj_elec_01_230420.pdf
April 2023	MLSE Error Propagation	shakiba_3dj_elec_02_230420.pdf
January 2024	Recap and Test Data	shakiba_3dj_elec_01a_240104.pdf
January 2024	Executive Summary	shakiba_3dj_elec_01a_240111.pdf

• In particular:

- * <u>shakiba_3df_01a_2211.pdf</u> suggested considering an implementation penalty at a later stage
- * <u>shakiba_3dj_elec_01_230420.pdf</u> explains three methods for calculating Δ COM (IP not included)
- * <u>shakiba_3dj_elec_01a_240111.pdf</u> adds the implementation penalty as the last step in calculating ΔCOM

Current MLSE in Matlab COM Function v4.0 Beta1L (U0)

- The original equations of the proposal is coded in COM function v4.0
- The code methodically executed the steps by which the MLSE COM analysis was conducted and presented (steps 1-5)
- Step 6 (implementation penalty) was not included at the time
- This first version used SER rather than DER and must be updated as per next slides
- Skipping the interim steps, purposely included for clarity of the analysis description, the calculations boil down to:

$$DER_{MLSE} \approx 2\sum_{j=1}^{\infty} j \left(\frac{3}{4}\right)^{j} \left(1 - CDF_{noise} \left(A_s \sqrt{1 + (j-1)(1-\alpha)^2 + \alpha^2}\right)\right) \qquad \leq$$

Intermediate parameter —— directly calculated form the COM-generated data

$$\Delta COM \approx 20 \log_{10} \left(\frac{1}{A_s} CDF_{noise}^{-1} \left(1 - \frac{1}{2} DER_{MLSE} \left(\frac{1}{3} + CDF_{noise} \left((1 - 2\alpha)A_s \right) \right) \right) \right)$$

January 2024

Equation Options

- Based on the feedback, the following updated equations were provided (<u>shakiba_3dj_elec_01_230420.pdf</u>):
- U1.a) \triangle COM equation was updated based on target DER (as opposed to SER)
- U1.b) A more comprehensive MLSE noise PDF was employed in the Δ COM equation
- U1.c) Effect of noise coloring was analyzed and added to the Δ COM equation
- Equation U0 is no-longer an option and should be updated (including COM Matlab function)
- The intend of this contribution is to provide background information and gauge support on one of the above equation options
- If during this process a more compelling option emerges, it can be considered

Equation Option U1.a (Baseline from Hereon)

- Changes the target from SER (U0) to DER
- This is the minimum update to implement

- This is even simpler than U0 and executes at no noticeable time: Calculating MLSE Advantage ...
- The analysis is based on assuming the same input noise PDF/CDF profile for MLSE noise for all error events (j) but scaling SNR individually for each event by a ratio of $1 + (j 1)(1 \alpha)^2 + \alpha^2$
- This is a simplifying compromise to reduce the computation complexity

Equation Option U1.b

- Built on U1.a (maintains DER target)
- Uses an improved method to calculate the MLSE noise PDF/CDF profile individually for every error event (*PDF*_{noise,jEE} / *CDF*_{noise,jEE})

$$DER_{MLSE} \approx 2\sum_{j=1}^{\infty} \left(\frac{3}{4}\right)^{j} \left(1 - CDF_{noise, jEE}\left(A_{s}(1 + (j-1)(1-\alpha)^{2} + \alpha^{2})\right)\right)$$

where $CDF_{noise, jEE}$ is calculated from $PDF_{noise, jEE}$:

 $PDF_{noise, jEE}(x) = PDF_{noise}(x) * \operatorname{conv}_{i=2}^{j} PDF_{noise}(x/(1-\alpha)) * PDF_{noise}(x/\alpha)$

$$\Delta COM \approx 20 \log_{10} \left(\frac{1}{A_s} CDF_{noise}^{-1} \left(1 - \frac{2}{3} DER_{MLSE} \right) \right) - IP$$

- Less compromised than U1.a at the expense of more computation
- Still runs very fast: Calculating MLSE Advantage ... Elapsed time is 0.079546 seconds.

Equation Option U1.c

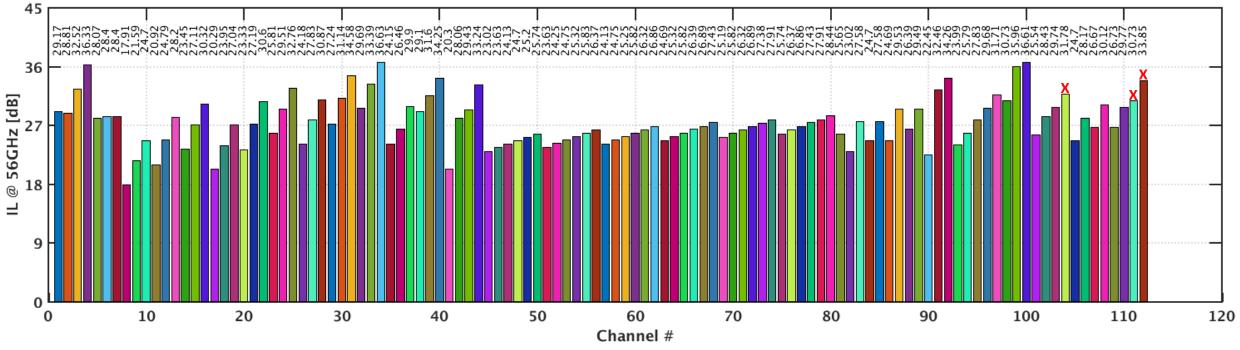
- Built on U1.b (maintains DER target and improved MLSE noise calculation)
- Adds noise coloring effect by calculating the noise PSD and correlation matrix

$$DER_{MLSE} \approx 2 \sum_{j=1}^{\infty} \left(\frac{3}{4}\right)^{j} \left(1 - CDF_{noise, jEE} \left(A_{s} \frac{\left(\operatorname{trace}(\rho_{noise, jEE})\right)^{\frac{3}{2}}}{\sqrt{\sum_{vertical} \sum_{horizental}(\rho_{noise, jEE})}}\right)\right)$$
$$\Delta COM \approx 20 \log_{10} \left(\frac{1}{A_{s}} CDF_{noise}^{-1} \left(1 - \frac{2}{3} DER_{MLSE}\right)\right) - IP$$

- Uses the same MLSE noise PDF/CDF profile of U1.b, but calculates SNR with noise coloring
- Some simplification as the MLSE noise PDF/CDF with coloring is not analytically computable
- Nevertheless, less compromised than U1.b at the expense of a little more computation
- For more information on noise coloring and correlation see <u>shakiba_3dj_elec_01_230420.pdf</u> and also the backup slides
- Still runs reasonably fast*: Calculating MLSE Advantage ... Elapsed time is 1.969777 seconds.

January 2024

* Run time is dominated by reading s4p files for calculating noise filters. Expected run time after full integration with COM code is ~0.2s.


Summary of Equation Options

Equation Option	Rating	Execution Runtime Estimate	Reference Slide	Description
U1.a	Good	~ 20ms	9	Baseline
U1.b	Better	~ 80ms	10	U1.a + Improved MLSE noise calculation
U1.c	Best	~ 200ms	11	U1.b + Noise coloring

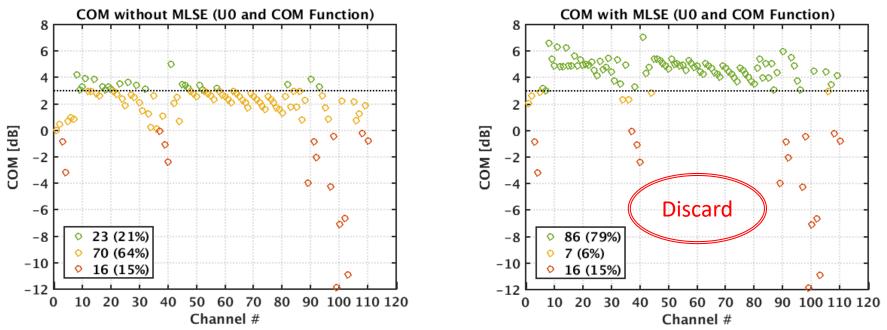
Test Channels

Channel #	Channel Source
1	https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_03_230629.zip
2	https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_04_230629.zip
3 – 7	https://www.ieee802.org/3/dj/public/tools/CR/kocsis_3dj_02_2305.zip
8-34	https://www.ieee802.org/3/dj/public/tools/KR/mellitz_3dj_02_elec_230504.zip
35 – 40	https://www.ieee802.org/3/dj/public/tools/CR/shanbhag_3dj_01_2305.zip
40 - 44	https://www.ieee802.org/3/dj/public/tools/KR/shanbhag_3dj_02_2305.zip
45 – 80	https://www.ieee802.org/3/dj/public/tools/KR/weaver_3dj_02_2305.zip
80 - 88	https://www.ieee802.org/3/dj/public/tools/KR/weaver_3dj_elec_01_230622.zip
89	https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_07_2309.zip
90 – 96	https://www.ieee802.org/3/dj/public/tools/KR/akinwale_3dj_01_2310.zip
97 – 100	https://www.ieee802.org/3/dj/public/tools/CR/akinwale_3dj_02_2311.zip
101 – 112	https://www.ieee802.org/3/dj/public/tools/CR/weaver_3dj_02_2311.zip

Test Channels

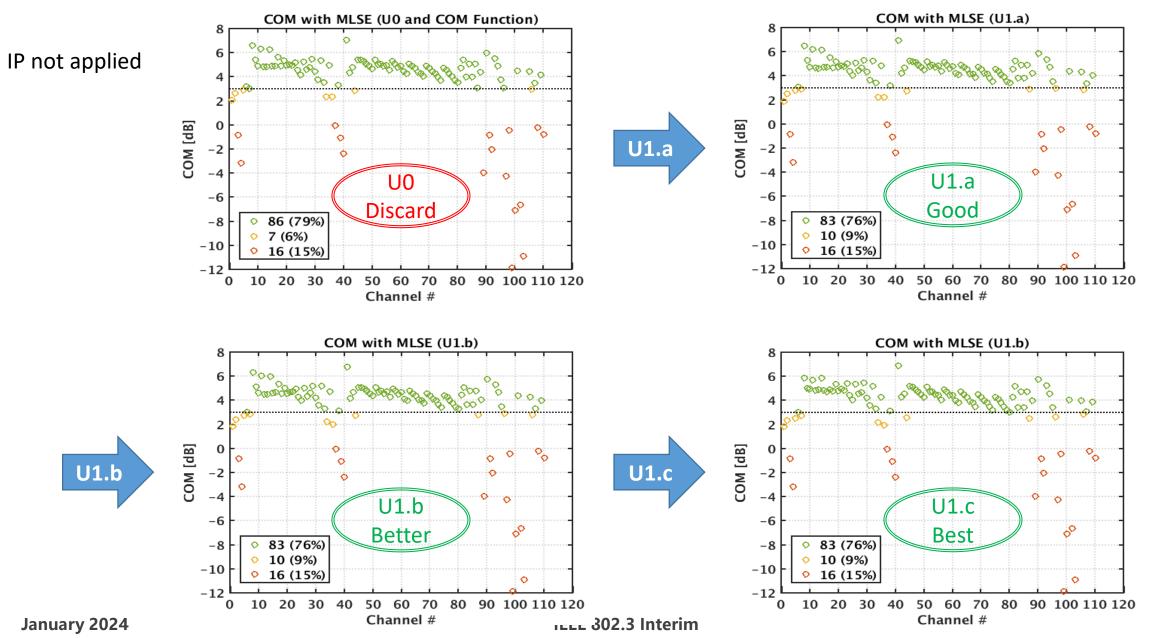
- IL (channel only) ranges from 17.9dB to 36.6dB (average 27.5dB)
- For channels 104, 111, and 112 COM function did not converge
 - Failed to find the floating tap locations: Undefined function or variable 'best_floating_tap_locations'.

Error in com_ieee8023_93a_420beta3L>optimize_fom (line 7212)
 result.floating_tap_locations=best_floating_tap_locations;


Error in com_ieee8023_93a_420beta3L (line 422)
 fom_result = optimize_fom(0P,param, chdata, sigma_bn,do_C2M);

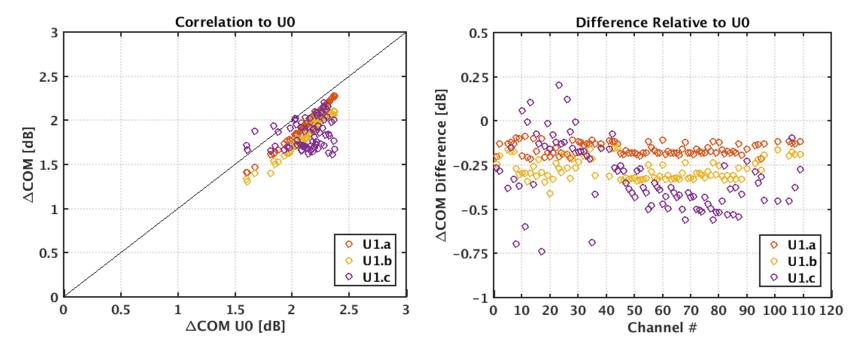
COM Configuration and Version

	Table 93A-1 parameters				I/O control			Table 93A-3 parameters	
Parameter	Setting	Units	Information	DIAGNOSTICS	0	logical	Parameter	Setting	Units
f b	112	GBd	THE REPORT	DISPLAY WINDOW	0	logical	package ti gamma0 a1 a2	[0.5E-3 0.89E-3 0.2E-3]	
f min	0.05	GHz		CSV REPORT	0	logical	package ti tau	6.141E-03	ns/m m
Delta f	0.01	GHz		RESULT DIR	\results\100GEL_KR_{date}\	rognan	package Z c	[87.5 87.5 : 92.5 92.5]	Ohm
C d	[0.4e-4 0.9e-4 1.1e-4 ; 0.4e-4 0.9e-4 1.1e-4]	nF	[TX RX]	SAVE FIGURES	0	logical	prenage_r_c	[01:501:5, 12:512:5]	0.111
L s	[0.130.150.14 ; 0.130.150.14]	nH	[TX RX]	Port Order	[1 3 2 4]	Nanan		Table 92-12 parameters	1
C b	[0.3e-40.3e-4]	nF	[TX RX]	RUNTAG	KR eval		Parameter	Setting	,
z pselect	[0.56-40.56-4]	<u> </u>	[test cases to run]		0	logical	board ti gamma0 a1 a2	[0 3.8206e-04 9.5909e-05]	
z_pselect z p(TX)	[12 33; 1.8 1.8]	mm	[test cases]	COM_CONTRIBUTION	Operational	logical	board ti tau	5.79E-03	ns/m m
z_p(TA) z p(NEXT)	[12 33; 1.6 1.6]	mm	[test cases]	COM Pass Threshold		dB	board Z c	100	Ohm
	[12 31; 1.0 1.0]		1 1	ERL Pass Theshold	8	dB		110.3	
z_p (FEXT)	[12 33; 1.8 1.8]	mm	[test cases] [test cases]		1.00E-04	dВ	z_bp (TX)	110.3	mm
z_p (RX)		mm		DER_0			z_bp (NEXT)		mm
C_p •	[0.4e-4 0.4e-4]	nF	[TX RX]	T_r	4.00E-03	ns	z_bp (FEXT)	110.3	mm
R_0	50	Ohm	1954 8641	FORCE_TR	1	logical	z_bp (RX)	110.3	mm
R_d	[46.25 46.25]	Ohm	[TX RX]	Local Search	2		C_0	[0.29E-4]	nF
A_v	0.413	V		BREAD_CRUMBS	1	logical	C_1	[0.19E-4]	nF
A_fe	0.413	V		SAVE_CONFIG2MAT	1	logical	Include PCB	0	logical
A_ne	0.608	v		PLOT_CM	0			Floating Tap Control	
AC_CM_RMS	0		[test cases]		TDR and ERL options		N_bg	4	0 1 2 or 3 groups
L 🗧	4			TDR	1	logical	N_bf	5	taps per group
м =	32			ERL	1	logical	N_f	60	UI span for floating taps
	filler and Eq			ERL_ONLY	0	logical	bmaxg	0.05	maxDFE value for floating taps
f_r 🗧	0.5	*fb		TR_TDR	0.01	ns	B_float_RSS_MAX	0.02	rss tail tap limit
c(0)	0.54		min	N	3500		N tail start	25	(UI) start of tail taps limit
c(-1)	[-0.4:0.02:0]		[min:step:max]	beta x	0			ICN parameters (v2.73+)
c(-2)	[0:0.02:0.16]		[min:step:max]	rho x	0.618		fv	0.528	*Fb
c(-3)	[-0.1:0.02:0]		[min:step:max]	fixture delay time	[0 0]	[port1 port2]	f f	0.528	"Fb
C(-4)	[0:0.02:0.1]		[min:step:max]	TDR W TXPKG	0	u	fn	0.528	*Fb
C(-5)	0		[min:step:max]	N bx	21	UI	f 2	80	GHz
C(-6)	0		[min:step:max]	Tukey Window	1	logical	A ft	0.6	V
c(1)	[-0.2:0.02:0]	<u> </u>	[min:step:max]		Noise, Jitter		Ant	0.6	v
N b	1	UI	[sigma_RJ 💻	0.01	UI			-
b max(1)	0.85	ă.	As/dffe1	A DD	0.02	- Ŭi		Receiver testing	
b max(2N b)	[0.3 0.2*ones(1.22)]		As/dfe2N b	eta 0	5.00E-09	V^2/GHz	RX CALIBRATION	0.000	logical
									,
b_min(1)	0.3		As/dffe1	SNR_TX	33	dB	Sigma BBN step	5.00E-03	v
b_min(2N_b)	[-0.3 -0.2*ones(1,22)]		As/dfe2N_b	R_LM	0.95				
g_DC	[-20:1:0]	dB	[min:step:max]						
f_z 🗧	44.8	GHz							
f_p1 🗧	44.8	GHz			Version: com	ieee802	22 922 120hi	ata2l	
f_p2 🗧	112	GHz							
g_DC_HP	[-6:1:0]		[min:step:max]			ACONAL			
f_HP_PZ	1.4	GHz		* C	alculates MLSE	ACOIVI D	aseu on SER (UU	<i>י</i> ן	
MLSE	1						•	-	
ffe_pre_tap_len	6				Version: com	1000807	12 022 120h	harmondering harmonic harmonic here here here here here here here her	
ffe_post_tap_len	24					ICCC002	23_93a_42006	clase_listpo	
ffe_tap_step_size	0								
ffe main cursor min	0.7			- * C	alculates MLSE	∆COM ba	ased on SER (UC)). DER (U1.a). v	with the
ffe pre tap1 max	0.7								
ffe post tap1 max	0.7			ir	mproved MLSE r	noise for	white (UI1 h) an	d colored (U1 a	<u>_)</u>
ffe_tapn_max	0.7								
ffe backoff	0			* V	Vill be made ava	ilabla if t	thara is interact		
ffe float	0	1	1:FFE float	_ * V	viii be made ava				
		1	0.0						
0.0	4		float FEE groups						
ffe_bg	4		float FFE groups	Both y	versions also a	alculato	for Gaussian	noise scenar	ios
ffe_bg ffe_bf	5		taps per group	• Both v	versions also c	alculate	e for Gaussian	noise scenar	ios
ffe_bg ffe_bf ffe_Nf	5 60		taps per group float taps range	• Both v	versions also c	alculate	e for Gaussian	noise scenar	ios
ffe_bg ffe_bf	5		taps per group		versions also c mentation per				ios


Test Channel Results – U0

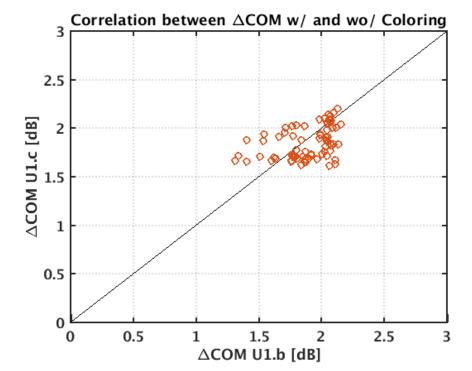
• U0 should be discarded, this slide is FYI if you have already used COM function MLSE

- Currently COM function ignores MLSE and reports Δ COM = 0 if the original COM is negative
- As a result 16 cases were not considered for MLSE calculations (also removed in next slides)
 Channels: 3, 4, 37, 39, 40, 89, 91, 92, 97, 98, 99, 100, 102, 103, 108, 110
- If needed, this screening can be relaxed to allow more channels to be considered
- Implementation penalty not applied January 2024


Test Channel Results – Updating to U1.a, U1.b, U1.c

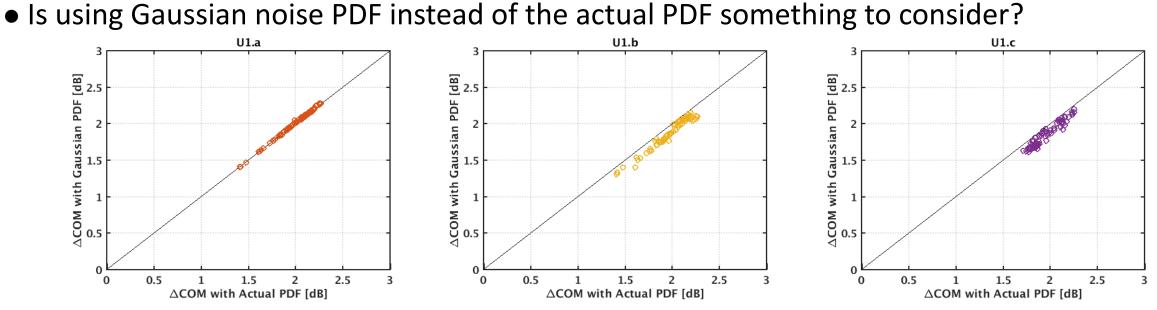
17

Test Channel Results – U1.a, U1.b, U1.c vs. U0


- U0 should be discarded, this slide is FYI if you have already used COM function MLSE
- \bullet Updated equations on average predict less ΔCOM
- Gap widens as updates kick in
- MLSE becomes more channel dependent as updates kick in
- Noise coloring makes the most effect and in some cases gives better results
- Suggests favoring U1.b and U1.c over U1.a
- IP not applied January 2024

[dB]	U0 (Currently Reported by the COM Function)	U1.a (Excludes Error Propagation)	U1.b (U1.a + Improved MLSE Noise PDF)	U1.c (U1.b + Noise Coloring)
Δ COM (Average)	2.14	1.98	1.87	1.82
Difference (Average)	0	-0.16	-0.27	-0.32

White (U1.b) or Colored (U1.c)?

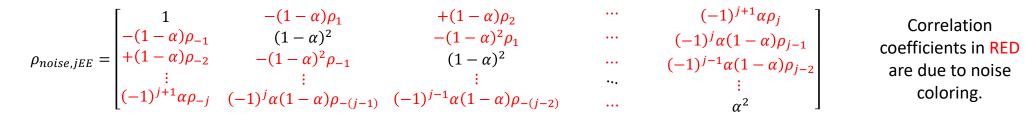

• From the test channel results:

- Correlation between Δ COM calculated with (U1.c) and without (U1.b) noise coloring is weak
- It is a good idea to include the effect of noise coloring (U1.c)
- Implementation penalty not applied

January 2024

Actual or Gaussian Noise?

- Using the actual noise PDF (as calculated by the COM function) makes more sense as the accuracy of the MLSE calculator improves
- These test channel results do not guarantee results for other channels
- COM calculates and is fundamentally based on the actual noise PDF, there is no compelling reason to use Gaussian (may still help to use as a reference to crosscheck and debug)
- Implementation penalty not applied January 2024


Summary and Conclusions

- Representing MLSE in COM reference receiver for CR/KR was supported by a straw poll
- Using the MLSE proposal was supported by a straw poll
- The proposal provides possibility to choose from three equation options based on the thoroughness vs. complexity trade-off
- These three equation options were presented and compared using data from a set of test channels (93 yielded out of 112 channels)
- Three equation options include an MLSE implementation penalty (TBD)
- A customized version of the COM function that supports three equation options and runs reasonably fast is available (if there is interest)
 - * Code quickly put together, not optimized, and currently requires Matlab toolboxes for non-essential functions
- Need consensus to refine which equation option to use

Backup Slides

Noise Filters and Correlation Matrix

• Correlation matrix $\rho_{noise, jEE}$ is calculated from the correlation coefficients of the noise:

• Correlation coefficients are obtained from inverse Fourier transform of the overall noise PSD:

 $R_{NN}(\tau) = F^{-1}\{PSD_{noise}\}$

• Noise PSD is obtained as power sum of the individual noise PSDs, each calculated based on their corresponding shaping filters (next slides)

 $PSD_{noise} = PSD_N + PSD_{TX} + PSD_{XT} + PSD_{ISI} + PSD_J$

• There is calculation overlap with the method recently considered or RX FFE optimization (<u>healey_3dj_elec_01a_240111.pdf</u>) that cane be leveraged

January 2024

Noise Shaping Filters – eta0

• Appendix 93A:

$$\sigma_N^2 = \eta_0 \int_0^\infty |H_r(f)H_{ctf}(f)|^2 df$$
(93A-35)

$$H_r(f) = \frac{1}{1 - 3.414214(f/f_r)^2 + (f/f_r)^4 + j2.613126(f/f_r - (f/f_r)^3)}$$
(93A-20)

$$H_{etf}(f) = \frac{\left(10^{\frac{g_{DC}}{20}} + j\frac{f}{f_z}\right) \left(10^{\frac{g_{DC}}{20}} + j\frac{f}{f_{LF}}\right)}{\left(1 + j\frac{f}{f_{p1}}\right) \left(1 + j\frac{f}{f_{p2}}\right) \left(1 + j\frac{f}{f_{LF}}\right)}$$
(93A-22)

• Now RX FFE should be added, similar to (93A-21) for TX:

$$H_{ffe}(f) = \sum_{i=-1}^{1} c(i) \exp(-j2\pi(i+1)(f/f_b))$$
(93A–21) Need a similar expression for RX FFE

• eta0 noise coloring filter:

White Noise
$$H_r(f)$$
 $H_{ctf}(f)$ $H_{rxffe}(f)$ RX Colored Noise
with Power σ_N^2
and PSD_N

Noise Shaping Filters – TX SNR

• Appendix 93A:

$$\sigma_{TX}^{2} = [h^{(0)}(t_{s})]^{2} 10^{-SNR_{TX}/10}$$
(93A-30)
$$h^{(k)}(t_{s}) = \int_{0}^{\infty} V(0) t^{(k)}(0) \exp(t(2-t)) dt$$
(93A-34)

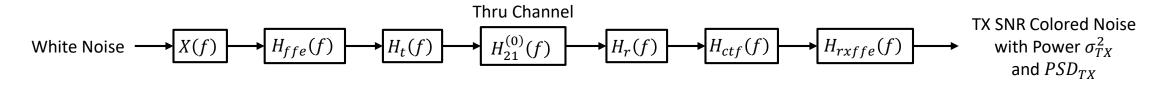
$$h^{(3)}(t) = \int_{-\infty}^{\infty} X(t) H^{(3)}(t) \exp((2\pi f t)) dt$$
 (93A-24)

$$X(f) = A_t T_b \operatorname{sinc}(fT_b) \tag{93A-23}$$

$$H^{(k)}(f) = H_{ffe}(f)H_t(f)H_{21}^{(k)}(f)H_r(f)H_{ctf}(f)$$
(93A-19)

$$H_{ffe}(f) = \sum_{i=-1}^{1} c(i) \exp(-j2\pi(i+1)(f/f_b))$$
(93A-21)

$$H_t(f) = \exp(-2(\pi f T_r / 1.6832)^2)$$
(93A-46)

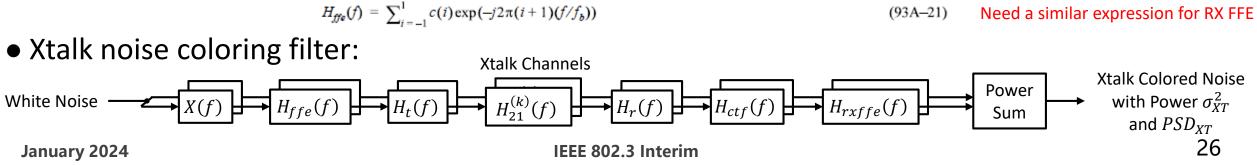

$$H_r(f) = \frac{1}{1 - 3.414214(f/f_*)^2 + (f/f_*)^4 + j2.613126(f/f_* - (f/f_*)^3)}$$
(93A-20)

$$H_{etf}(f) = \frac{\left(10^{\frac{g_{DC}}{20}} + j\frac{f}{f_z}\right) \left(10^{\frac{g_{DC2}}{20}} + j\frac{f}{f_{LF}}\right)}{\left(1 + j\frac{f}{f_{p1}}\right) \left(1 + j\frac{f}{f_{p2}}\right) \left(1 + j\frac{f}{f_{LF}}\right)}$$
(93A-22)

• Now RX FFE should be added, similar to (93A-21) for TX:

$$H_{ffe}(f) = \sum_{i=-1}^{1} c(i) \exp(-j2\pi(i+1)(f/f_b))$$
(93A–21) Need a similar expression for RX FFE

• TX noise coloring filter:



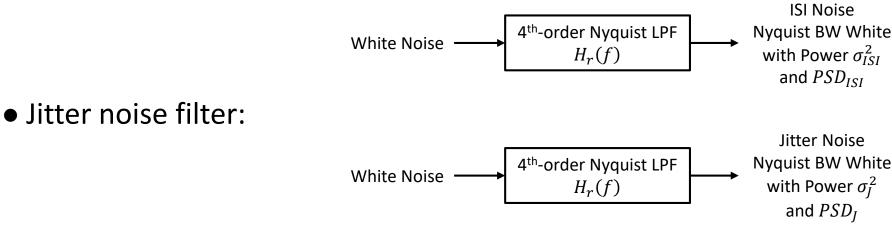
Noise Shaping Filters – Xtalk

• Appendix 93A:

$\sigma_{XT}^2 = \sum_{k=1}^{K-1} [\sigma_i^{(k)}]^2$	(93A–34)
$[\sigma_m^{(k)}]^2 = \sigma_X^2 \sum_n [h^{(k)}((m/M+n)T_b)]^2$	(93A–33)
$\sigma_X^2 = \frac{L^2 - 1}{3(L - 1)^2}$	(93A–29)
$h^{(k)}(t) = \int_{-\infty}^{\infty} X(f) H^{(k)}(f) \exp(j2\pi ft) df$	(93A–24)
$X(f) = A_t T_b \operatorname{sinc}(fT_b)$	(93A–23)
$H^{(k)}(f) = H_{ffe}(f)H_t(f)H_{21}^{(k)}(f)H_r(f)H_{ctf}(f)$	(93A–19)
$H_{ffe}(f) = \sum_{i=-1}^{1} c(i) \exp(-j2\pi(i+1)(f/f_b))$	(93A–21)
$H_t(f) = \exp(-2(\pi f T_r / 1.6832)^2)$	(93A-46)
$H_r(f) = \frac{1}{1 - 3.414214(f/f_r)^2 + (f/f_r)^4 + j2.613126(f/f_r - (f/f_r)^3)}$	(93A–20)
$H_{ctf}(f) = \frac{\left(10^{\frac{g_{\rm DC}}{20}} + j\frac{f}{f_z}\right) \left(10^{\frac{g_{\rm DC2}}{20}} + j\frac{f}{f_{\rm LF}}\right)}{\left(1 + j\frac{f}{f_{p1}}\right) \left(1 + j\frac{f}{f_{p2}}\right) \left(1 + j\frac{f}{f_{\rm LF}}\right)}$	(93A–22)

• Now RX FFE should be added, similar to (93A-21) for TX:

Noise Shaping Filters – ISI and Jitter



$$\sigma_{ISI}^{2} = \sigma_{X}^{2} \sum_{n} h_{ISI}^{2}(n)$$
(93A-31)
$$\sigma_{J}^{2} = (A_{DD}^{2} + \sigma_{RJ}^{2})\sigma_{X}^{2} \sum_{n} h_{J}^{2}(n)$$
(93A-32)

• ISI and jitter noises are assumed to remain white, but within the Nyquist bandwidth

 $H_{r}(f) = \frac{1}{1 - 3.414214(f/f_{r})^{2} + (f/f_{r})^{4} + j2.613126(f/f_{r} - (f/f_{r})^{3})}$ (93A-20) Arbitrary and reasonable choice

• ISI noise filter:

