200G/Lane electrical interface jitter parameters

Junqing (Phil) Sun, Credo Yasuo Hidaka, Credo

IEEE P802.3dj Task Force January 2024

Contributors and Supporters

Geoff Zhang, AMD John Calvin, Keysight Matt Brown, Alphawave Alireza Zandieh, Alphawave Xiang He, Huawei

Abstract

- Jitter and transition time is a trade off between performance and implementation power and cost. Jitter and transition time linearly scaled down from 100G/lane is challenging for massive 200G/lane productions given power and cost constraints.
- ✤ <u>ran 3dj elec 01a 231207</u> proposed to move the standard forward with some preliminary parameters. We investigated how to optimize σ_{RJ} and A_{DD} for broad implementation and reasonable performance.

Initial simulation conditions

- COM parameters (detail COM parameters in back up)
 - fb : 106.25 GBaud
 - Tx FIR : pre 2 taps, post 0 taps
 - Rx FFE : pre 6 taps, post 45 taps
 - > DFE : 1 tap
 - No floating taps
 - \triangleright DER₀: 1E-4
 - η₀: 4.0Ε-9
 - ➤ Tr : 4ps
 - \succ σ_{RJ} : 10mUI
 - ➢ A_{DD} : 20mUI
 - Package A (case 2: zp=33mm)
 - ✓ Without MLSE
 - Package B (case 4: zp=45mm)
 - ✓ With MLSE

KR/CR Channels used for the study

- Selected 26 KR/CR channels from contribution to P802.3dj
 - For each data set, selected a few channels with die2die IL \leq 40dB
 - ✓ If possible, selected with PKG B
 - \checkmark If not possible with PKG B, selected with PKG A
 - → With PKG A, all channels have die2die IL \leq 40dB
 - ✓ All 26 channels are used for study with PKG A
 - → With PKG B, only channels 1-9,12,16 have die2die IL \leq 40dB
 - ✓ Only those 11 channels are used for study with PKG B

			CH IL	Fit CH IL	D2D IL	D2D IL	ILD	ERL	ICN	COM (dB)	w/ PKG A	COM (dB)	w/ PKG B	used fo	or study
CH#	data set	tag	(dB)	(dB)	PKGA(dB)	PKGB(dB)	(dB)	(dB)	(mV)	w/ MLSE	w/o MLSE	w/ MLSE	w/o MLSE	w/ PKG A	w/ PKG B
1	mellitz_3dj_02_elec_230504	CA 200mm, FO 100mm, PCB 75mm	22.7638	21.5792	32.7456	39.4515	0.20705	18.6363	0.94363	5.1718	4.1102	4.9269	2.9748	x	x
2		CA 200mm, FO 200mm, PCB 50mm	22.3229	21.3837	32.9123	39.2556	0.21796	17.9239	0.93516	4.9469	3.8088	4.2941	2.3837	x	x
3		CA 500mm, FO 100mm, PCB 50mm	22.2536	20.9543	32.9592	39.2247	0.22056	17.7278	0.97363	4.9214	3.7906	4.3284	2.4181	x	x
4		CA 1000mm, FO 100mm, PCB 25mm	21.8556	21.7501	33.0429	39.2081	0.22531	16.7368	0.8868	6.3565	5.0673	5.5984	3.5566	x	x
5	weaver_3dj_02_2305	host1 150mm, host2 150mm	21.7407	22.0272	33.0356	39.1232	0.095847	17.1272	1.2286	4.9157	3.7017	4.2864	2.2928	x	x
6		host1 150mm, host2 200mm	22.302	22.5379	33.4566	39.6155	0.088222	17.1397	1.2241	5.1304	3.6487	4.1698	2.1693	x	x
7		host1 150mm, host2 250mm	22.9027	23.0468	34.1459	40.249	0.08713	17.1585	1.2199	4.7737	3.4397	3.9583	1.9165	x	x
8	akinwale_3dj_01_2310	External 100mm	20.8348	20.5607	30.4362	37.305	0.13515	15.6556	1.127	5.9554	4.5797	5.329	3.2735	x	x
9		External 300mm	22.361	22.2294	31.9688	38.8317	0.13663	15.8851	1.0168	5.6418	4.1382	4.7348	2.6861	х	x
10		External 500mm	24.3314	23.9436	33.9163	40.7901	0.13558	16.0544	0.92529	5.3391	3.6619	3.98	1.9382	х	
11	shanbhag_3dj_02_2305	TP0-TP5 27.4dB	27.414	27.2668	39.7417	45.4115	0.05707	20.5098	0.15032	5.0721	3.5175	1.9905	0.052272	х	
12		TP0-TP5 19.3dB	19.2615	19.8094	31.3187	37.09	0.088295	18.5845	0.19937	6.703	5.7976	5.8174	4.0546	х	x
13		TP0-TP5 28.0dB	27.7126	28.2966	39.7106	45.5274	0.089873	20.5282	0.12077	5.7527	3.8493	2.1651	0.21991	х	
14	shanbhag_3dj_01_2305	TP0-TP5 23.5dB	23.5093	23.2555	35.423	41.351	0.16085	15.9775	0.86255	4.4951	3.6752	3.3999	1.5455	x	
15		TP0-TP5 25.9dB	25.9311	25.6616	37.7637	43.5927	0.15881	16.7607	0.77498	4.2497	3.1728	2.4709	0.57448	x	
16	weaver_3dj_elec_01_230622	host1 150mm, host2 150mm, room temp	21.7407	22.0272	33.0356	39.1232	0.095847	17.1272	0.94075	5.6358	4.437	4.7272	2.7335	x	x
17		host1 150mm, host2 150mm, high temp	24.3128	24.5487	35.5648	41.6778	0.096646	17.9171	0.90613	5.3181	3.7417	3.6152	1.5871	x	
18	weaver_3dj_02_2311	host1 HH, CA-A, host2 HN, vendor Y	23.4169	24.3217	34.729	40.8113	0.15852	16.6477	1.472	5.0421	3.6487	3.6152	1.5871	x	
19		host1 HH, CA-B, host2 HL, vendor Y	26.6144	27.6132	37.8587	43.9932	0.14939	16.1264	1.1745	4.2487	2.6507	-0.49792	-0.49792	x	
20		host1 HN, CA-B, host2 HN, vendor Y	25.1857	26.2401	36.4209	42.5509	0.15243	16.3062	1.2638	4.4788	3.0485	2.2955	0.3365	x	
21		host1 HN, CA-C, hosst2 HL, vendor Y	28.5224	29.5245	39.6505	45.8497	0.14894	16.409	1.0179	3.5853	1.7449	-2.0418	-2.0418	x	
22	kocsis_3dj_02_2305	config 3, host1 4dB, cable 1.5m, host2 4dB	26.6484	27.6629	37.9955	44.0577	0.16851	16.0875	1.3974	4.2955	2.4411	-0.48971	-0.48971	x	
23		config 4, host1 3dB, cable 1m, host2 9dB	26.7388	27.8445	37.956	44.0924	0.17463	15.2592	1.3913	4.2293	2.3609	-0.57143	-0.57143	x	
24		config 5, host1 9dB, cable 1m, host2 3dB	26.7388	27.8445	37.9603	44.0941	0.17463	15.2592	1.3913	4.1839	2.3154	-0.57143	-0.57143	x	
25	lim_3dj_03_230629	Design A	28.0458	28.4533	38.2284	44.8606	0.17267	18.5992	1.7018	3.5111	1.8196	-1.334	-1.334	x	
26	lim_3dj_04_230629	Design B	28.869	27.7792	38.8244	45.586	0.15683	18.2444	0.65531	3.0161	1.608	-1.3489	-1.3489	x	

Sweep Conditions

- Sweep 1 : Sweep only σ_{RJ}
 - Sweep σ_{RJ} from 10 mUI to 20 mUI in 0.5 mUI step
 - ➢ Fix A_{DD} at 20 mUI
- Sweep 2 : Sweep σ_{RJ} and A_{DD} simultaneously with the same ratio
 - > Sweep σ_{RJ} from 10 mUI to 20 mUI in 0.5 mUI step
 - Sweep A_{DD} from 20 mUI to 40 mUI in 1.0 mUI step

Results of Sweep 1&2 w/ PKG A (without MLSE)

- Sweeping only σ_{RJ} changes COM only moderately
- Sweeping σ_{RJ} and A_{DD} results in larger COM difference

COM in average

COM of each channel

Results of Sweep 1&2 w/ PKG B (with MLSE)

- Sweeping only σ_{RJ} changes COM only moderately
- Sweeping σ_{RJ} and A_{DD} results in larger COM difference

COM in average

COM of each channel

Summary of Results of Sweep 1 & 2

• COM difference for σ_{RJ} = 15.0mUI from 10mUI with A_{DD} = 20mUI is about 0.18dB

Sweep on	yσ_RJ							Sweep o_	RJ and A_D	D					
σ_RJ	A_DD		COM (dB)			dCOM		σ_RJ	A_DD		COM (dB)			dCOM	
		PKG A	PKG B		PKG A	PKG B				PKG A	PKG B		PKG A	PKG B	
mUI rms	mUI pk	w/o MLSE	w/ MLSE	AVG	w/o MLSE	w/ MLSE	AVG	mUI rms	mUI pk	w/o MLSE	w/ MLSE	AVG	w/o MLSE	w/ MLSE	AVG
		26 CHs	11 CHs		26 CHs	11 CHs				26 CHs	11 CHs		26 CHs	11 CHs	
10.0	20	3.452912	4.742791	4.097851	0	0	0	10.0	20	3.452912	4.742791	4.097851	0	0	0
10.5	20	3.436073	4.729791	4.082932	-0.01684	-0.013	-0.01492	10.5	21	3.380985	4.679218	4.030101	-0.07193	-0.06357	-0.06775
11.0	20	3.418831	4.715573	4.067202	-0.03408	-0.02722	-0.03065	11.0	22	3.309512	4.613418	3.961465	-0.1434	-0.12937	-0.13639
11.5	20	3.402381	4.699636	4.051009	-0.05053	-0.04315	-0.04684	11.5	23	3.234262	4.543964	3.889113	-0.21865	-0.19883	-0.20874
12.0	20	3.384735	4.682382	4.033558	-0.06818	-0.06041	-0.06429	12.0	24	3.156638	4.473691	3.815165	-0.29627	-0.2691	-0.28269
12.5	20	3.366715	4.666073	4.016394	-0.0862	-0.07672	-0.08146	12.5	25	3.077377	4.396055	3.736716	-0.37553	-0.34674	-0.36114
13.0	20	3.345092	4.651409	3.998251	-0.10782	-0.09138	-0.0996	13.0	26	3.001277	4.326127	3.663702	-0.45163	-0.41666	-0.43415
13.5	20	3.325669	4.633582	3.979626	-0.12724	-0.10921	-0.11823	13.5	27	2.919192	4.254045	3.586619	-0.53372	-0.48875	-0.51123
14.0	20	3.3056	4.614691	3.960145	-0.14731	-0.1281	-0.13771	14.0	28	2.841219	4.179773	3.510496	-0.61169	-0.56302	-0.58736
14.5	20	3.283423	4.597264	3.940343	-0.16949	-0.14553	-0.15751	14.5	29	2.762642	4.107482	3.435062	-0.69027	-0.63531	-0.66279
15.0	20	3.261904	4.574964	3.918434	-0.19101	-0.16783	-0.17942	15.0	30	2.680096	4.026855	3.353475	-0.77282	-0.71594	-0.74438
15.5	20	3.239185	4.553818	3.896501	-0.21373	-0.18897	-0.20135	15.5	31	2.597932	3.944682	3.271307	-0.85498	-0.79811	-0.82654
16.0	20	3.215796	4.532491	3.874144	-0.23712	-0.2103	-0.22371	16.0	32	2.51553	3.859682	3.187606	-0.93738	-0.88311	-0.91025
16.5	20	3.191473	4.513882	3.852677	-0.26144	-0.22891	-0.24517	16.5	33	2.432946	3.783682	3.108314	-1.01997	-0.95911	-0.98954
17.0	20	3.167681	4.491773	3.829727	-0.28523	-0.25102	-0.26812	17.0	34	2.349994	3.700736	3.025365	-1.10292	-1.04205	-1.07249
17.5	20	3.141208	4.468509	3.804858	-0.3117	-0.27428	-0.29299	17.5	35	2.267328	3.626527	2.946928	-1.18558	-1.11626	-1.15092
18.0	20	3.117088	4.441736	3.779412	-0.33582	-0.30105	-0.31844	18.0	36	2.180478	3.545691	2.863084	-1.27243	-1.1971	-1.23477
18.5	20	3.088696	4.4111	3.749898	-0.36422	-0.33169	-0.34795	18.5	37	2.093207	3.452073	2.77264	-1.3597	-1.29072	-1.32521
19.0	20	3.060958	4.388036	3.724497	-0.39195	-0.35475	-0.37335	19.0	38	2.013534	3.376218	2.694876	-1.43938	-1.36657	-1.40298
19.5	20	3.034265	4.364873	3.699569	-0.41865	-0.37792	-0.39828	19.5	39	1.926112	3.294264	2.610188	-1.5268	-1.44853	-1.48766
20.0	20	3.006127	4.338536	3.672332	-0.44678	-0.40425	-0.42552	20.0	40	1.836115	3.208573	2.522344	-1.6168	-1.53422	-1.57551

σ_{RJ} and A_{DD} vs Calculated J_{RMS} and J_{3u}/J_{4u}

✤ If we keep A_{DD} 20mUI and compare the cases with 15 mUI and 10 mUI σ_{RJ}, the difference of J_{RMS} is 11.8%, J_{3u} is 30.4% and J_{4u} is 32.5%.

σ _{RJ} (mUI)	A _{DD} (mUI)	J _{RMS} (mUI)	J _{RMS} (ratio)	J _{3u} (mUI)	J _{3u} (ratio)	J _{4u} (mUI)	J _{4u} (ratio)
10.0	20	22.3607	100.000%	101.810	100.000%	114.385	100.000%
10.5	20	22.5887	101.020%	104.900	103.035%	118.104	103.251%
11.0	20	22.8254	102.078%	107.990	106.071%	121.823	106.503%
11.5	20	23.0705	103.175%	111.080	109.106%	125.542	109.754%
12.0	20	23.3238	104.307%	114.171	112.141%	129.261	113.005%
12.5	20	23.5850	105.475%	117.261	115.177%	132.980	116.257%
13.0	20	23.8537	106.677%	120.351	118.212%	136.699	119.508%
13.5	20	24.1299	107.912%	123.441	121.247%	140.418	122.759%
14.0	20	24.4131	109.179%	126.532	124.282%	144.137	126.010%
14.5	20	24.7032	110.476%	129.622	127.318%	147.856	129.262%
15.0	20	25.0000	111.803%	132.712	130.353%	151.576	132.513%

J_{RMS} and J_{3u}/J_{4u} in 100G spec

Current jitter specs for 100G/L interfaces:

Interface	σ _{RJ} (mUI)	A _{DD} (mUI)	J _{RMS} (mUI)	J _{3u03} (mUI)	J _{3u} (mUI)	J _{4u03} (mUI)	J _{4u} (mUI)
CR (100G/L)	10	20	23	115	125		
KR (100G/L)	10	20	23	106	115		
C2C (100G/L)	10	20	23			118	128

J_{RMS} and J_{3u}/J_{4u} in 200G spec with 15mUl σ_{RJ}

Compared to 100G spec, we can relax J_{RMS} by 11.8% in terms of UI, J_{3u} by 30.4% and J_{4u} by 32.5%.

Interface	σ _{RJ} (mUI)	A _{DD} (mUI)	J _{RMS} (mUI)	J _{3u03} (mUI)	J _{3u} (mUI)	J _{4u03} (mUI)	J _{4u} (mUI)
CR (200G/L)	15	20	25.7	150	163		
KR (200G/L)	15	20	25.7	138	150		
C2C (200G/L)	15	20	25.7			156	170

Note: The test point insertion loss (TP2 (CR) or TP0d (KR,C2C)) is assumed to be the same as 100G spec in this calculation but will certainly go up. For this increase of insertion loss, the J_{RMS} , J_{3u} , and J_{4u} specifications shall be relaxed further after the test point insertion loss specs are finalized.

Measurement Result of 212.5Gbps Instrument

Measurement results of instrument-grade TX of 212.5Gbps at TPOd reported by John Calvin (calvin_3dj_elec_01a_240104) passes our proposal for KR (200G/L) spec, without much margin to cover PVT variations. It fails KR (100G/L) spec, if simply scaled from P802.3ck spec.

	Measured result (212.5Gbps)	KR (100G/L) 802.3ck spec	KR (200G/L) our proposal
Jrms	19.6 mUI	23 mUl	25.7 mUI
J3u03	112 mUI	106 mUI	138 mUI
J3u	133 mUI	115 mUl	150 mUI

calvin_3dj_elec_01a_240104, slide 5 └ TPOd Instrument direct setup

TPOd Conditions: 80GHz 4BT

Direct Measurement from outputs of generator's remote head Explicit clocking (no CDR, results in slightly higher Jitter values) Instrument grade TX with 700mV SE/ 1.4V Differential 7 TAP FFE (3 Pre)

Alternative Option: CDR bandwidth

- If linearly scaling jitter parameters are preferred, an alternative option to alleviate implementation challenge due to jitter is to raise CDR bandwidth.
 - > TX jitter measurement is lower with higher-bandwidth CDR.
 - TX implementation cost is relaxed by raising CDR bandwidth from 4MHz to a higher value such as 8MHz to keep the same CDR bandwidth to Baud rate ratio.
- This is a viable option.
 - CDR loop SNR is maintained by keeping CDR bandwidth to Baud rate Ratio.
 - CDR circuit can run faster than previous generations.
 - 4MHz is quite low compared to other recent standards:
 - ✓ PCIe Gen5 (32Gbps, NRZ) specifies CDR bandwidth of 20MHz.
 - ✓ PCIe Gen6 (64Gbps, PAM4) specifies CDR bandwidth of 10MHz.

Summary

- Propose σ_{RJ} and A_{DD} to be 15mUI and 20mUI for 200G KR/CR COM analysis. The complete proposal with TX jitter parameters is in page 12.
 - ➤ TX J_{RMS} spec is 25.7mUI. TX J_{3u} spec is 163mUI for CR, and 150mUI for KR.
 - > COM difference between 10mUI and 15mUI σ_{RJ} is only 0.18dB COM.
- An alternative option to effectively overcome TX jitter challenge is to raise CDR bandwidth to 8 MHz. It keeps jitter parameters the same in the standard and reduces residual jitters after tracking.

Back up

COM parameters for KR/CR channels (package A w/o MLSE)

Parameter Instant (math matrix) Instant (matrix) Instant (math m		Table 93A-1 parameters				I/O control			Table 93A–3 parameters	_		SAVE_CONFIG2MAT	0	
f_nim0.06.20.670.07 <t< td=""><td>Parameter</td><td>Setting</td><td>Units</td><td>Information</td><td>DIAGNOSTICS</td><td>1</td><td>logical</td><td>Parameter</td><td>Setting</td><td>Units</td><td>Information</td><td></td><td>Receiver testing</td><td></td></t<>	Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	Parameter	Setting	Units	Information		Receiver testing	
Image0.056HC10.05(A10.05(A00.005(A000 <td>f_b</td> <td>106.25</td> <td>GBd</td> <td></td> <td>DISPLAY_WINDOW</td> <td>0</td> <td>logical</td> <td>package_tl_gamma0_a1_a2</td> <td>[5e-4 8.9e-4 2e-4]</td> <td></td> <td></td> <td>RX_CALIBRATION</td> <td>0</td> <td>logical</td>	f_b	106.25	GBd		DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[5e-4 8.9e-4 2e-4]			RX_CALIBRATION	0	logical
bella Outo	f_min	0.05	GHz		CSV_REPORT	1	logical	package_tl_tau	0.006141	ns/mm		Sigma BBN step	5.00E-03	V
C.d.064-0.	Delta_f	0.01	GHz		RESULT_DIR	.\results\CACR_set1_{date}\		package_Z_c	[87.5 87.5 ; 92.5 92.5; 100 100; 100 100]	Ohm			ICN parameters	
Ls03.33 5 3.43, 03.03.55 0.44nH[TXR]Port Order11 24121212.31, 13.81, 20,00nmme (ret case)1, f0.278PF0R,050OhnTXR]0hnTXR0hnTXR0hnTXR0hnTXR0hnTXR0hnTXR0hnTXR0hnTXR0hn0hn0hnTXR0hn0hnTXR0hn </td <td>C_d</td> <td>[0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4]</td> <td>nF</td> <td>[TX RX]</td> <td>SAVE_FIGURES</td> <td>0</td> <td>logical</td> <td>z_p select</td> <td>[2]</td> <td></td> <td>[test cases to run]</td> <td>f_v</td> <td>0.278</td> <td>Fb</td>	C_d	[0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical	z_p select	[2]		[test cases to run]	f_v	0.278	Fb
C.bID384 0.38-4)nfTR.KBUIMAGKB, getL, quid.j. j. j	L_s	[0.13 0.15 0.14; 0.13 0.15 0.14]	nH	[TX RX]	Port Order	[1324]		z_p (TX)	[1233;1.81.8;00;00]	mm	[test cases]	f_f	0.278	Fb
R_d 50 $0m$ CM_d $COM_dONTRIJEUN$ 1 $logical$ i_p ($fictal 2331:161:00:00$) mm $letcasel$ f_d d_d <th< td=""><td>C_b</td><td>[0.3e-4 0.3e-4]</td><td>nF</td><td>[TX RX]</td><td>RUNTAG</td><td>KR_set1_eval_</td><td></td><td>z_p (NEXT)</td><td>[1231;1.81.8;00;00]</td><td>mm</td><td>[test cases]</td><td>f_n</td><td>0.278</td><td>Fb</td></th<>	C_b	[0.3e-4 0.3e-4]	nF	[TX RX]	RUNTAG	KR_set1_eval_		z_p (NEXT)	[1231;1.81.8;00;00]	mm	[test cases]	f_n	0.278	Fb
$\bar{\mathbf{R}}_{d}$ $(45 ds)$ $0hn$ $\bar{\mathbf{T}} KR)$ $\mathbf{T} KR)$ <td>R_0</td> <td>50</td> <td>Ohm</td> <td></td> <td>COM_CONTRIBUTION</td> <td>1</td> <td>logical</td> <td>z_p (FEXT)</td> <td>[1233;1.81.8;00;00]</td> <td>mm</td> <td>[test cases]</td> <td>f_2</td> <td>61.625</td> <td>GHz</td>	R_0	50	Ohm		COM_CONTRIBUTION	1	logical	z_p (FEXT)	[1233;1.81.8;00;00]	mm	[test cases]	f_2	61.625	GHz
A.y0.385Vv/v/r/r0TR000000000A.fe0.66VV/rTR100101001000 <td>R_d</td> <td>[45 45]</td> <td>Ohm</td> <td>[TX RX]</td> <td></td> <td></td> <td></td> <td>z_p (RX)</td> <td>[1231;1.81.8;00;00]</td> <td>mm</td> <td>[test cases]</td> <td>A_ft</td> <td>0.450</td> <td>V</td>	R_d	[45 45]	Ohm	[TX RX]				z_p (RX)	[1231;1.81.8;00;00]	mm	[test cases]	A_ft	0.450	V
A, fe 0.386 V v v/p/r TR 1 logical A, ne 0.66 V V FR 1 logical	A_v	0.386	v	vp/vf=	TE	OR and ERL options		C_p	[0.4e-4 0.4e-4]	nF	[TX RX]	A_nt	0.450	V
A. ne0.6VNRL1logical $\body term (Fifter: REFE) = V = V = V = V = V = V = V = V = V = $	A_fe	0.386	v	vp/vf=	TDR	1	logical							
L 4 4 6 U 6 U 6 U 6 0 6 0 6 0 6 0 6 0	A_ne	0.6	v		ERL	1	logical Filter: Rx FFE			Parameter	Setting			
M32MBIR_TOR0.01Mffe_post tap.len45UIboard 1 (tau)5.706-03n/mmfr0.58%bM0.00logiclffe tap.steps.sc00N2002.503.0007 (c3.0007 (c<	L	4			ERL_ONLY	0	ns	ffe_pre_tap_len	6	UI		board_tl_gamma0_a1_a2	6.44084e-4 3.6036e-0	1.4 db/in @ 53.125G
file and figure with relation of the part of the	м	32			TR_TDR	0.01		ffe_post_tap_len	45	UI		board_tl_tau	5.790E-03	ns/mm
fr0.68fbIDB guttervol1IDB guttervol000 $z_{b}\rho(TX)$ 32mma(1)(-3.0.050)(minstepma)(minstepma) bta_X 0.6180ffepet apl max0.7002_bp(RX)32mma(2)(.0.55.1)(minstepma)TDR,W TXP6001ffepet apl max0.7002_bp(RX)32mma(3)0(minstepma)TDR,W TXP6001ffepet apl max0.702_bp(RX)32mma(4)0(minstepma)TDR,W TXP6000102_bp(RX)32mma(4)0(minstepma)TDR,W TXP600002_bp(RX)32mma(1)0(minstepma)TDR,W TXP600000000a(1)0(minstepma)ffutorelay Ima0.0100 <td></td> <td>filter and Eq</td> <td></td> <td></td> <td>N</td> <td>4000</td> <td>logical</td> <td>ffe_tap_step_size</td> <td>0</td> <td></td> <td></td> <td>board_Z_c</td> <td>100</td> <td>Ohm</td>		filter and Eq			N	4000	logical	ffe_tap_step_size	0			board_Z_c	100	Ohm
(1) 0.55 min $beax$ $0.c$ $ffe_{pec} tap1 max$ 0.7 0 (1) $z_{p}(PEXT)$ 32 mm (-1) $(-0.30.05.01)$ $(minstepmax)$ $ToR, w_T N K 0$ 0.618 $(fe_{pot} tap1 max$ 0.7 0 $z, bp(FEXT)$ 32 mm (-2) $(-0.65.01)$ $(minstepmax)$ $ToR, w_T N K 0$ 0 $(fe_{pot} tap1 max$ 0.7 0 $z, bp(FEXT)$ 32 mm (-2) $(-0.65.01)$ $(minstepmax)$ N_w 20 0 $(fe_{pot} tap1 max$ 0.7 0 $z, bp(FEXT)$ 32 mm (-4) 0 $(minstepmax)$ N_w 20 0 0 0.7 (fe_{D}) $0.2e+40$ nF (-4) 0 $(minstepmax)$ N_w 20 0 0 0 0 $0.2e+40$ nF (1) 0 $(minstepmax)$ N_w 0.01 0 0 0 0 $0.2e+40$ nF h_max N_b 1 0	f_r	0.58	*fb		TDR_Butterworth	1		ffe_main_cursor_min	0.7			z_bp (TX)	32	mm
(1) $(-)3.00.50.1$ $(-)$ $(-)$ $(-)3.00.50.1$ $(-)$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.50.1$ $(-)3.00.10.50$	c(0)	0.55		min	beta_x	0		ffe_pre_tap1_max	0.7			z_bp (NEXT)	32	mm
(-2) (-1) $(-1$	c(-1)	[-0.3:0.05:0]		[min:step:max]	rho_x	0.618		ffe_post_tap1_max	0.7			z_bp (FEXT)	32	mm
(-1) $(-1$	c(-2)	[0:.05:0.1]		[min:step:max]	TDR_W_TXPKG	0	UI	ffe_tapn_max	0.7			z_bp (RX)	32	mm
(-4)0 $(-minstegma)$ fixture delaytime (0.0) $(0$	c(-3)	0		[min:step:max]	N_bx	20						C_0	[0.2e-4 0]	nF
(1) 0 (m) minstegmas)Tukey_Window 1 (1) <t< td=""><td>c(-4)</td><td>0</td><td></td><td>[min:step:max]</td><td>fixture delay time</td><td>[00]</td><td></td><td></td><td>Operational</td><td></td><td></td><td>C_1</td><td>[0.2e-4 0]</td><td>nF</td></t<>	c(-4)	0		[min:step:max]	fixture delay time	[00]			Operational			C_1	[0.2e-4 0]	nF
N.b1UIVIVIVIVIVIIVIIIVIIIIVIIIIVIIIIVIIIIVIIIIVIIIIVIIIIVIIIIVIIIIIVIIIIIVIIIIIVIIIIIVIIIIIVIIIIIVIIIIIVIIIIIVIIIIIVIIIIIIVIIIIIIVIIIIIIVIIIIIIVIIIIIIVIIIIIIVIIIIIIVIIIIIIVIIIIIIVIIIIIIVIIIIIIVIIIIIIVIIIIIIIVIIIIIIVIIIIIIVIIIIIIVIIIIIIIVIIIIIIIVIIIIIIIIVIIIIIIIIIIVIIIIIIIIIIIIIIIVIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	c(1)	0		[min:step:max]	Tukey_Window	1		ERL Pass threshold	10	dB		Include PCB	0	logical
b nax(1) 0.75 As/dfte1 sigma JI 0.01 UI DER_0 1.00ER_0 1.00E-04 Histogram_Window_Weight gaussian selection b nax(2,N b) 0.3 As/dfte1 Ap/dfe2.N b 0.00 V2/dF1 T_ 0.00400 n O Qr 0.00 UI b_min(1) 0 As/dfe1 eta_0 4.00E-09 dB FORCE_TR 1 logical O 0.01 Or 0 0.02 Or 0 0.00 Or	N_b	1	UI			Noise, jitter		COM Pass threshold	3	db		Seletions (rec	tangle, gaussian,dual_	rayleigh,triangle
b max(2.N.b) 0.3 As/dfe2b Ap/dfe2b Ap/dfe2b <tha< td=""><td>b_max(1)</td><td>0.75</td><td></td><td>As/dffe1</td><td>sigma_RJ</td><td>0.01</td><td>UI</td><td>DER_0</td><td>1.00E-04</td><td></td><td></td><td>Histogram_Window_Weight</td><td>gaussian</td><td>selection</td></tha<>	b_max(1)	0.75		As/dffe1	sigma_RJ	0.01	UI	DER_0	1.00E-04			Histogram_Window_Weight	gaussian	selection
b_min(1) 0 As/dfc1. eta_0 4.00E-09 dB FORCE_TR 1 logical cols rest res rest res res res	b_max(2N_b)	0.3		As/dfe2N_b	A_DD	0.02	V^2/GHz	T_r	0.00400	ns		Qr	0.02	UI
b_min(2.N_b) -0.15 S As/dfe2Np SNR_TX 33 PMD_type C2C Image: Constraint of the const	b_min(1)	0		As/dffe1	eta_0	4.00E-09	dB	FORCE_TR	1	logical				
g_C [-1521:-3] B [minstep:max] R_M 0.95 FW 1 0 Neg 0 0.12 of groups f_2 25.16 GH G MISE 0 Ioin Neg 0 0 0.12 of groups f_p1 40.00 GHz MISE 0 logit Neg Ne	b_min(2N_b)	-0.15	S	As/dfe2N_b	SNR_TX	33		PMD_type	C2C				Floating Tap Contro	
f_2 25.16 GHz GHz MCM MLSE 0 logical N_bf 4 taps per group f_1 40.00 GHz GHz Taps per group Taps per group Taps per group f_p1 40.00 GHz GHz Taps per group Taps per group Taps per group f_p2 56.00 GHz Genetisi 3d fulla 2211 Sangle adjustment [-8.8] Sangle adjustment [-8.8] B float PSS MAX O.0 maxDFE value of floating taps g_DC_HP [-5:0] [miladf_02_20316 Local Search 2 D B float PSS MAX D.0 rstalt applicating taps f_HP_PZ 1.328125 GHz GH	g_DC	[-15:1:-3]	dB	[min:step:max]	R_LM	0.95		EW	1			N_bg	0	0 1 2 or 3 groups
f_p1 40.00 GHz GHz Ts_anchor 1 N_f 80 Utspan folding taps f_p2 56.00 GHz benartsi 3df gla_2211 sample_adjustment [-8.8] C bmaxg 0.2 max DFF value for floating taps g_DC.HP [-5:10] [minstepma] [minstepma] [minstepma] [Local Search 2 B B_10at RSS_MAX 0.1 rs stalt ap limit f_HP_PZ 1.328125 GHz GHz [Minstepma]	f_z	25.16	GHz					MLSE	0	logical		N_bf	4	taps per group
f_p2 56.00 Grad benarts jdf Qla_2211 sample adjustment [-8.8] odd bmaxg 0.2 max DFE value for floating taps g_DC,HP [-5:1:0] [min:step:max] miljadf Q2_20316 Local Search 2 B float_RSS_MAX 0.1 rss tait tap limit g_DC,HP [-1:3:2125 GHz GHZ Local Search 2 N_tail_start 2.5 (U) start of tait tap limit	f_p1	40.00	GHz					ts_anchor	1			N_f	80	UI span for floating taps
g DC_HP [fini:step:max] [mli]3df_02_220316 Local Search 2 B_float_RSS_MAX 0.1 rsstall tap limit f_HP_PZ 1.328125 GHz GHz C C N_tail_start 25 (UI) start of tail taps limit	f_p2	56.00	GHz		benartsi_3df_01a_2211			sample_adjustment	[-88]			bmaxg	0.2	max DFE value for floating taps
f_HP_PZ 1.328125 GHz 25 (UI) start of tail taps limit	g_DC_HP	[-5:1:0]		[min:step:max]	mli_3df_02_220316			Local Search	2			B_float_RSS_MAX	0.1	rss tail tap limit
	f_HP_PZ	1.328125	GHz									N_tail_start	25	(UI) start of tail taps limit

COM parameters for KR/CR channels (package B w/ MLSE)

Parameter Setting Units Information DIAGNOSTICS f_b 106.25 GBd DISPLAY_WINDOW	1 0 1 sults\CACR set1 {date}\	logical logical	Parameter package_tl_gamma0_a1_a2	Setting	Units	Information		Receiver testing	
f_b 106.25 GBd DISPLAY_WINDOW f_min 0.05 GHz CSV_PEDOPT	0 1 sults\CACR set1 {date}\	logical logical	package_tl_gamma0_a1_a2	[50-4.6.50-4.20-4]					
f min 0.05 GHZ CSV REPORT	1 ults\CACR set1 {date}\	logical		[06-4 0.06-4 06-4]			RX_CALIBRATION	0	logical
GHZ C3V_REPORT	ults\CACR set1 {date}\		package_tl_tau	0.006141	ns/mm		Sigma BBN step	5.00E-03	v
Delta_f 0.01 GHz RESULT_DIR .\resu			package_Z_c	[92 92 ; 70 70; 80 80; 100 100]	Ohm			ICN parameters	
C_d [0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4] nF [TX RX] SAVE_FIGURES	0	logical	z_p select	[4]		[test cases to run]	f_v	0.278	Fb
L_S [0.13 0.15 0.14; 0.13 0.15 0.14] nH [TX RX] Port Order	[1324]		z_p (TX)	[8243045;1111;1111;0.50.50.50.5]	mm	[test cases]	f_f	0.278	Fb
C_b [0.3e-4 0.3e-4] nF [TX RX] RUNTAG	KR_set1_eval_		z_p (NEXT)	[8222843;1111;1111;0.50.50.50.5]	mm	[test cases]	f_n	0.278	Fb
R_0 50 Ohm COM_CONTRIBUTION	1	logical	z_p (FEXT)	[8243045;1111;1111;0.50.50.50.5]	mm	[test cases]	f_2	61.625	GHz
R_d [45 45] Ohm [TX RX]			z_p (RX)	[8222843;1111;1111;0.50.50.50.5]	mm	[test cases]	A_ft	0.450	v
A_v 0.386 V vp/vf= TDR and /	ERL options		C_p	[0.4e-4 0.4e-4]	nF	[TX RX]	A_nt	0.450	v
A_fe 0.386 V vp/vf= TDR	1	logical							
A_ne 0.6 V ERL	1	logical		Filter: Rx FFE			Parameter	Setting	
L 4 ERL_ONLY	0	ns	ffe_pre_tap_len	6	UI		board_tl_gamma0_a1_a2	6.44084e-4 3.6036e-0	1.4 db/in @ 53.125G
M 32 TR_TDR	0.01		ffe_post_tap_len	45	UI		board_tl_tau	5.790E-03	ns/mm
filter and Eq N	4000	logical	ffe_tap_step_size	0			board_Z_c	100	Ohm
f_r 0.58 *fb TDR_Butterworth	1		ffe_main_cursor_min	0.7			z_bp (TX)	32	mm
c(0) 0.55 min beta_x	0		ffe_pre_tap1_max	0.7			z_bp (NEXT)	32	mm
c(-1) [-0.3:0.05:0] [min:step:max] rho_x	0.618		ffe_post_tap1_max	0.7			z_bp (FEXT)	32	mm
c(-2) [0:.05:0.1] [min:step:max] TDR_W_TXPKG	0	UI	ffe_tapn_max	0.7			z_bp (RX)	32	mm
c(-3) 0 [min:step:max] N_bx	20						C_0	[0.2e-4 0]	nF
c(-4) 0 [min:step:max] fixture delay time	[00]			Operational			C_1	[0.2e-4 0]	nF
c(1) 0 [min:step:max] Tukey_Window	1		ERL Pass threshold	10	dB		Include PCB	0	logical
N_b 1 UI Noise	se, jitter		COM Pass threshold	3	db		Seletions (re	ctangle, gaussian,dual_	rayleigh, triangle
b_max(1) 0.75 As/dffe1 sigma_RJ	0.01	UI	DER_0	1.00E-04			Histogram_Window_Weight	gaussian	selection
b_max(2N_b) 0.3 As/dfe2N_b A_DD	0.02	V^2/GHz	Tr	0.00400	ns		Qr	0.02	UI
b_min(1) 0 As/dffe1 eta_0	4.00E-09	dB	FORCE_TR	1	logical				
b_min(2N_b) -0.15 S As/dfe2N_b SNR_TX	33		PMD_type	C2C				Floating Tap Contro	1
g_DC [-15:1:-3] dB [min:step:max] R_LM	0.95		EW	1			N_bg	0	012 or 3 groups
f_z 25.16 GHz			MLSE	1	logical		N_bf	4	taps per group
f_p1 40.00 GHz			ts_anchor	1			N_f	80	UI span for floating taps
f_p2 56.00 GHz benartsi_3df_01a_2211			sample_adjustment	[-88]			bmaxg	0.2	max DFE value for floating taps
g_DC_HP [-5:1:0] [min:step:max] mli_3df_02_220316			Local Search	2			B_float_RSS_MAX	0.1	rss tail tap limit
f_HP_PZ 1.328125 GHz							N_tail_start	25	(UI) start of tail taps limit

Detail Results of Sweep 1

With PKG A (without MLSE)

Sweep	only o	_RJ wit	h PKG A																											
A_DD	σ_F	RJ	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8	CH9	CH10	CH11	CH12	CH13	CH14	CH15	CH16	CH17	CH18	CH19	CH20	CH21	CH22	CH23	CH24	CH25	CH26	AVG	dAVG
mUI pk	mU	JI rms	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
	20	10.0	4.1102	3.8088	3.7906	5 5.0673	3.7017	3.6487	3.4397	4.5797	4.1382	3.6619	3.5175	5.7976	3.8493	3.6752	3.1728	4.437	3.7417	3.6487	2.6507	3.0485	1.7449	2.4411	2.3609	2.3154	1.8196	1.608	3.452912	0
	20	10.5	4.0963	3.7819	3.7648	3 5.0518	3.6884	3.6223	3.4139	4.5667	4.1242	3.6487	3.4915	5.7809	3.8358	3.6619	3.1603	4.4225	3.7284	3.6223	2.6389	3.0239	1.7343	2.4296	2.3381	2.3041	1.8089	1.5975	3.436073	-0.01684
	20	11.0	4.0824	3.7685	3.7448	5.0362	3.6752	3.6091	3.4011	4.5408	4.0963	3.6355	3.4785	5.7476	3.8223	3.6355	3.1478	4.3937	3.7017	3.6091	2.6271	3.0116	1.7237	2.4066	2.3268	2.2928	1.7982	1.5767	3.418831	-0.03408
	20	11.5	4.0546	3.7551	3.7316	5 5.0053	3.6487	3.596	3.3882	4.5279	4.0824	3.6091	3.4655	5.7311	L 3.8088	3.6223	3.1229	4.3793	3.6884	3.5828	2.6036	2.9993	1.7131	2.3952	2.3154	2.2815	1.7875	1.5663	3.402381	-0.05053
	20	12.0	4.0408	3.7284	3.7051	L 4.9744	3.6355	3.5697	3.3754	4.5021	4.0546	3.596	3.4526	5.698	3.7819	3.596	3.1105	4.3649	3.6752	3.5697	2.5919	2.9871	1.7026	2.3837	2.3041	2.2702	1.7768	1.5559	3.384735	-0.06818
	20	12.5	4.0132	3.7017	3.6919	4.959	3.6223	3.5566	3.3498	4.4764	4.0408	3.5828	3.4268	5.665	3.7685	3.5828	3.098	4.3362	3.6487	3.5436	2.5802	2.9626	1.692	2.3723	2.2928	2.2589	1.7662	1.5455	3.366715	-0.0862
	20	13.0	3.9857	3.6884	3.6655	4.9283	3.596	3.5305	3.3371	4.4508	4.0132	3.5566	3.4139	5.6322	3.7417	3.5566	3.0733	4.3219	3.6355	3.5305	2.5569	2.9504	1.6709	2.3495	2.2702	2.2364	1.7556	1.5248	3.345092	-0.10782
	20	13.5	3.9719	3.6619	3.6524	4.8978	3.5828	3.5045	3.3116	4.438	3.9994	3.5436	3.3882	5.5994	3.715	3.5305	3.0609	4.2934	3.6091	3.5045	2.5452	2.926	1.6604	2.3381	2.2589	2.2252	1.7343	1.5144	3.325669	-0.12724
	20	14.0	3.9445	3.6487	3.6261	L 4.8673	3.5566	3.4915	3.2989	4.4125	3.9719	3.5175	3.3626	5.5831	3.7017	3.5175	3.0362	4.265	3.596	3.4785	2.5336	2.9139	1.6499	2.3154	2.2364	2.2028	1.7237	1.4938	3.3056	-0.14731
	20	14.5	3.9172	3.6223	3.6	4.8369	3.5305	3.4655	3.2735	4.3871	3.9582	3.4915	3.3498	5.5506	3.6752	3.4915	3.0116	4.2366	3.5697	3.4655	2.5104	2.8896	1.6289	2.3041	2.2252	2.1916	1.7026	1.4834	3.283423	-0.16949
	20	15.0	3.89	3.596	3.5869	4.8066	3.5175	3.4397	3.2609	4.3491	3.9309	3.4785	3.3243	5.5182	2 3.6487	3.4655	2.9993	4.2225	3.5436	3.4397	2.4872	2.8775	1.6184	2.2815	2.2028	2.1693	1.692	1.4629	3.261904	-0.19101
	20	15.5	3.8764	3.5697	3.5609	4.7765	3.4915	3.4139	3.2356	4.3238	3.9036	3.4526	3.2989	5.4698	3.6355	3.4397	2.9748	4.1943	3.5175	3.4139	2.4756	2.8534	1.5975	2.2702	2.1916	2.1581	1.6709	1.4526	3.239185	-0.21373
	20	16.0	3.8493	3.5436	3.5349	4.7464	3.4655	3.3882	3.2104	4.2986	3.8764	3.4268	3.2862	5.4377	7 3.6091	3.4139	2.9504	4.1662	3.5045	3.3882	2.4526	2.8293	1.5871	2.2477	2.1693	2.1359	1.6604	1.4321	3.215796	-0.23712
	20	16.5	3.8223	3.5175	3.509	4.7165	3.4397	3.3754	3.1853	4.2735	3.8358	3.4011	3.2609	5.4057	3.5828	3.3882	2.926	4.1382	3.4785	3.3626	2.4296	2.8052	1.5663	2.2252	2.1581	2.1137	1.6394	1.4218	3.191473	-0.26144
	20	17.0	3.7953	3.4915	3.4832	4.6866	3.4139	3.3498	3.1603	4.236	3.8088	3.3754	3.2356	5.3738	3.5566	3.3626	2.9139	4.1102	3.4526	3.3371	2.4181	2.7813	1.5455	2.2028	2.1359	2.1026	1.6289	1.4014	3.167681	-0.28523
	20	17.5	3.7551	3.4655	3.4575	4.6569	3.3882	3.3243	3.1478	4.2111	3.7819	3.3498	3.2104	5.3262	2 3.5305	3.3371	2.8896	4.0824	3.4268	3.3116	2.3952	2.7574	1.5248	2.1581	2.1137	2.0805	1.608	1.381	3.141208	-0.3117
	20	18.0	3.7284	3.4397	3.4318	4.6125	3.3754	3.2989	3.1229	4.1862	3.7551	3.3243	3.1853	5.2946	3.5045	3.3116	2.8654	4.0546	3.4011	3.2862	2.3723	2.7454	1.5144	2.1359	2.0915	2.0585	1.5871	1.3607	3.117088	-0.33582
	20	18.5	3.7017	3.4139	3.4062	4.583	3.3371	3.2735	3.098	4.1491	3.7284	3.2989	3.1603	5.2475	3.4655	3.2735	2.8413	4.0132	3.3754	3.2482	2.3495	2.7217	1.4938	2.1137	2.0695	2.0365	1.5663	1.3404	3.088696	-0.36422
	20	19.0	3.6752	3.3754	3.3807	4.5389	3.3116	3.2482	3.0733	4.1121	3.7017	3.2735	3.1353	5.2162	3.4397	3.2482	2.8172	3.9857	3.3371	3.223	2.3268	2.6624	1.4732	2.0915	2.0475	2.0145	1.5559	1.3201	3.060958	-0.39195
	20	19.5	3.6487	3.3498	3.3426	4.5097	3.2862	3.2104	3.0485	4.0875	3.6752	3.2482	3.1105	5.1694	3.4139	3.223	2.7813	3.9582	3.3116	3.1979	2.3041	2.6389	1.4526	2.0695	2.0255	1.9927	1.5351	1.2999	3.034265	-0.41865
	20	20.0	3.6091	3.3243	3.3172	2 4.466	3.2609	3.1853	3.0116	4.0508	3.6487	3.223	3.0733	5.1384	3.3882	3.1853	2.7574	3.9172	3.2862	3.1603	2.2815	2.6154	1.4321	2.0585	2.0036	1.9708	1.5144	1.2798	3.006127	-0.44678

✤ With PKG B (with MLSE)

Sweep on	ly σ_RJ wit	th PKG B												
A_DD	σ_RJ	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	CH9	CH12	CH16	AVG	dAVG
mUI pk	mUI rms	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
20	10.0	4.9269	4.2941	4.3284	5.5984	4.2864	4.1698	3.9583	5.329	4.7348	5.8174	4.7272	4.742791	0
20	10.5	4.9147	4.2713	4.317	5.5854	4.2751	4.1586	3.9475	5.3164	4.7229	5.8035	4.7153	4.729791	-0.013
20	11.0	4.9025	4.2599	4.3055	5.5593	4.2638	4.1475	3.9367	5.3038	4.7111	5.7897	4.6915	4.715573	-0.02722
20	11.5	4.8781	4.2485	4.2941	5.5463	4.2525	4.1253	3.919	5.2911	4.6993	5.7621	4.6797	4.699636	-0.04315
20	12.0	4.866	4.2371	4.2713	5.5203	4.23	4.1142	3.8975	5.266	4.6875	5.7484	4.6679	4.682382	-0.06041
20	12.5	4.8538	4.2145	4.2599	5.5074	4.2188	4.1031	3.8867	5.2534	4.664	5.7209	4.6443	4.666073	-0.07672
20	13.0	4.8296	4.2031	4.2485	5.4815	4.2076	4.0921	3.8828	5.2283	4.6523	5.7072	4.6325	4.651409	-0.09138
20	13.5	4.8175	4.1918	4.2258	5.4686	4.1852	4.07	3.8652	5.2158	4.6289	5.6799	4.6207	4.633582	-0.10921
20	14.0	4.7934	4.1693	4.2145	5.4429	4.1671	4.059	3.8438	5.1909	4.6172	5.6663	4.5972	4.614691	-0.1281
20	14.5	4.7813	4.158	4.1918	5.4172	4.156	4.048	3.8331	5.166	4.5939	5.6391	4.5855	4.597264	-0.14553
20	15.0	4.7226	4.1355	4.1805	5.4044	4.1337	4.026	3.8118	5.1536	4.5823	5.612	4.5622	4.574964	-0.16783
20	15.5	4.6986	4.1131	4.158	5.3789	4.1226	4.0081	3.8011	5.1288	4.559	5.585	4.5388	4.553818	-0.18897
20	16.0	4.6747	4.1019	4.1355	5.3534	4.1004	3.9863	3.7799	5.1041	4.5359	5.5581	4.5272	4.532491	-0.2103
20	16.5	4.6628	4.0796	4.1243	5.328	4.0783	3.9644	3.7693	5.0794	4.5243	5.5383	4.504	4.513882	-0.22891
20	17.0	4.639	4.0573	4.1019	5.3027	4.0672	3.9536	3.7481	5.0328	4.5012	5.5249	4.4808	4.491773	-0.25102
20	17.5	4.6152	4.0351	4.0796	5.2774	4.0452	3.9318	3.7269	5.0083	4.4782	5.4982	4.4577	4.468509	-0.27428
20	18.0	4.5916	3.9821	4.0573	5.2522	4.0232	3.9101	3.699	4.9838	4.4553	5.4583	4.4462	4.441736	-0.30105
20	18.5	4.5331	3.96	4.0113	5.2271	4.0012	3.8885	3.6953	4.9594	4.3913	5.4317	4.4232	4.4111	-0.33169
20	19.0	4.5095	3.9379	3.9891	5.2021	3.9794	3.8669	3.6743	4.9351	4.3686	5.4053	4.4002	4.388036	-0.35475
20	19.5	4.4861	3.9159	3.967	5.1647	3.9575	3.8561	3.6534	4.9108	4.3459	5.3789	4.3773	4.364873	-0.37792
20	20.0	4.4627	3.8939	3.9449	5.1398	3.9358	3.8346	3.6256	4.8745	4.3164	5.3526	4.3431	4.338536	-0.40425

Detail Results of Sweep 2

Sweep o	RJ and A_D	D with PK	GA																										
A_DD	σ_RJ	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8	CH9	CH10	CH11	CH12	CH13	CH14	CH15	CH16	CH17	CH18	CH19	CH20	CH21	CH22	CH23	CH24	CH25	CH26	AVG	dAVG
mUI pk	mUI rms	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
20	10.0	4.1102	3.8088	3.7906	5.0673	3.7017	3.6487	3.4397	4.5797	4.1382	3.6619	3.5175	5.797	3.8493	3.6752	3.1728	4.437	3.7417	3.6487	2.6507	3.0485	1.7449	2.4411	2.3609	2.3154	1.8196	1.608	3.452912	N/A
21	10.5	4.0408	3.715	3.7183	4.9744	3.6355	3.5697	3.3626	4.5021	4.0546	3.596	3.4526	5.698	3.7685	3.596	3.098	4.3649	3.6752	3.5566	2.5919	2.9748	1.692	2.3837	2.2928	2.2589	1.7768	1.5559	3.380985	-0.07193
22	11.0	3.9445	3.6487	3.6392	4.8825	3.5566	3.5045	3.2989	4.4125	3.9857	3.5175	3.3754	5.5994	3.7017	3.5175	3.0362	4.2792	3.596	3.4915	2.5336	2.9139	1.6394	2.3268	2.2364	2.2028	1.7131	1.4938	3.309512	-0.1434
23	11.5	3.8764	3.5697	3.5609	4.7916	3.4915	3.4139	3.223	4.3238	3.89	3.4397	3.2989	5.4698	3.6223	3.4397	2.9626	4.1943	3.5175	3.4011	2.4641	2.8534	1.5871	2.2589	2.1804	2.147	1.6709	1.4423	3.234262	-0.21865
24	12.0	3.7819	3.4785	3.4832	4.6717	3.4139	3.3371	3.1603	4.236	3.8088	3.3754	3.223	5.3738	3.5305	3.3498	2.8896	4.1102	3.4397	3.3243	2.4066	2.7813	1.5351	2.1581	2.1137	2.0805	1.6184	1.3912	3.156638	-0.29627
25	12.5	3.7017	3.4011	3.3934	4.5683	3.3371	3.2609	3.0856	4.1491	3.715	3.2862	3.1478	5.2632	3.4526	3.2609	2.8293	4.0132	3.3626	3.2356	2.3381	2.6861	1.4732	2.1026	2.0475	2.0145	1.5559	1.3303	3.077377	-0.37553
26	13.0	3.6223	3.3243	3.3172	4.4794	3.2609	3.1728	3.0116	4.0508	3.6355	3.2104	3.0733	5.1539	3.3754	3.1853	2.7454	3.9309	3.2735	3.1603	2.2702	2.6154	1.4218	2.0365	1.9927	1.9599	1.4938	1.2597	3.001277	-0.45163
27	13.5	3.5175	3.2356	3.2292	4.3663	3.1853	3.098	2.926	3.9536	3.5436	3.1229	2.9993	5.04	3.2862	3.098	2.6743	3.8358	3.1979	3.0733	2.2028	2.5336	1.3607	1.9708	1.9165	1.8841	1.4321	1.2096	2.919192	-0.53372
28	14.0	3.4397	3.1603	3.1544	4.2684	3.0856	3.0239	2.8534	3.8695	3.4655	3.0485	2.9017	4.9394	3.1979	3.0116	2.5919	3.7417	3.1105	2.9993	2.1359	2.4641	1.2999	1.9165	1.8518	1.8196	1.3708	1.1499	2.841219	-0.61169
29	14.5	3.3498	3.0609	3.0803	4.158	3.0116	2.9504	2.7813	3.7442	3.3754	2.9626	2.8293	4.8342	3.1229	2.9382	2.522	3.6487	3.0362	2.9139	2.0585	2.3952	1.2396	1.8518	1.7875	1.7556	1.3201	1.1005	2.762642	-0.69027
30	15.0	3.2609	2.9993	2.9889	4.0624	2.926	2.8534	2.6979	3.661	3.2989	2.8896	2.7574	4.700	3.0362	2.8534	2.4411	3.5566	2.9382	2.8293	1.9927	2.3154	1.1698	1.7662	1.7237	1.692	1.2496	1.022	2.680096	-0.77282
31	15.5	3.1478	2.9017	2.9061	3.9679	2.8534	2.7813	2.6154	3.567	3.2104	2.7932	2.6743	4.597	2.9504	2.7574	2.3723	3.4655	2.8534	2.7217	1.9165	2.2477	1.1103	1.7131	1.6499	1.6184	1.1996	0.95384	2.597932	-0.85498
32	16.0	3.0733	2.8172	2.8241	3.848	2.7574	2.6979	2.5336	3.474	3.1229	2.7217	2.5919	4.4805	2.8654	2.6743	2.2815	3.3626	2.7693	2.6389	1.841	2.1581	1.0513	1.6499	1.5871	1.5559	1.1301	0.89587	2.51553	-0.93738
33	16.5	2.9871	2.7335	2.7198	3.7558	2.6743	2.6036	2.4526	3.382	3.0239	2.6389	2.5104	4.3793	3 2.7574	2.5919	2.214	3.2735	2.6861	2.5569	1.7768	2.0915	0.98297	1.5767	1.5144	1.4834	1.0611	0.82872	2.432946	-1.01997
34	17.0	2.8896	2.6389	2.6395	3.6386	2.5919	2.522	2.3837	3.2796	2.9504	2.5569	2.4181	4.2508	3 2.6743	2.5104	2.1359	3.1853	2.6036	2.4756	1.7026	2.0145	0.91515	1.5041	1.4423	1.4116	1.0024	0.76209	2.349994	-1.10292
35	17.5	2.8052	2.5569	2.5713	3.5486	2.522	2.4411	2.3041	3.1896	2.8413	2.4641	2.3381	4.152	2 2.5802	2.4181	2.0475	3.098	2.5104	2.3837	1.6289	1.9382	0.84785	1.4218	1.3708	1.3404	0.92481	0.70538	2.267328	-1.18558
36	18.0	2.7098	2.4756	2.47	3.4469	2.4296	2.3609	2.214	3.1005	2.7574	2.3723	2.2589	4.0408	3 2.4988	2.3381	1.9817	2.9871	2.4296	2.3041	1.5455	1.8625	0.79058	1.3505	1.2496	1.2296	0.86703	0.62101	2.180478	-1.27243
37	18.5	2.6154	2.3837	2.392	3.3214	2.3495	2.2702	2.1359	2.9904	2.6743	2.2815	2.1693	3.9309	2.3837	2.2477	1.8841	2.9017	2.3381	2.214	1.4732	1.7768	0.71481	1.2697	1.1797	1.1598	0.80963	0.55594	2.093207	-1.3597
38	19.0	2.5336	2.3041	2.2927	3.2223	2.2702	2.1916	2.0585	2.9033	2.5919	2.2028	2.0805	3.8223	3 2.3041	2.1693	1.8089	2.8052	2.2477	2.1359	1.4014	1.692	0.64904	1.2096	1.1202	1.1005	0.73369	0.50056	2.013534	-1.43938
39	19.5	2.4181	2.214	2.2054	3.1242	2.1804	2.1026	1.9708	2.8064	2.4988	2.1137	2.0036	3.6884	2.214	2.0695	1.7237	2.7098	2.1581	2.0475	1.3201	1.608	0.58377	1.14	1.0513	1.0317	0.66778	0.42726	1.926112	-1.5268
40	20.0	2.3381	2.1026	2.1137	3.0239	2.0805	1.9599	1.8841	2.7211	2.3952	2.0255	1.9057	3.5828	3 2.1248	1.9817	1.6499	2.5802	2.0695	1.9599	1.2396	1.5351	0.50977	1.071	0.97325	0.96354	0.59306	0.35458	1.836115	-1.6168

✤ With PKG B (with MLSE)

Sweep o	RJ and A_E	D with PK	G B											
A_DD	σ_RJ	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8	CH9	CH12	CH16	AVG	dAVG
mUI pk	mUI rms	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
20	10.0	4.9269	4.2941	4.3284	5.5984	4.2864	4.1698	3.9583	5.329	4.7348	5.8174	4.7272	4.742791	0
21	10.5	4.866	4.2258	4.2713	5.5203	4.23	4.1142	3.8975	5.266	4.664	5.7484	4.6679	4.679218	-0.06357
22	11.0	4.7934	4.1693	4.2145	5.4429	4.1629	4.059	3.8438	5.1909	4.6055	5.6799	4.5855	4.613418	-0.12937
23	11.5	4.6866	4.1019	4.158	5.3661	4.1004	4.0041	3.7905	5.1164	4.5474	5.585	4.5272	4.543964	-0.19883
24	12.0	4.6271	4.0154	4.0908	5.29	4.0452	3.9427	3.7269	5.0205	4.4782	5.5045	4.4693	4.473691	-0.2691
25	12.5	4.5095	3.9379	4.0113	5.2146	3.9794	3.8777	3.6743	4.9472	4.3799	5.4246	4.4002	4.396055	-0.34674
26	13.0	4.451	3.883	3.9339	5.1275	3.9249	3.8132	3.6152	4.8625	4.312	5.3325	4.3317	4.326127	-0.41666
27	13.5	4.3696	3.8175	3.8681	5.0343	3.86	3.7492	3.5425	4.7905	4.2377	5.2613	4.2638	4.254045	-0.48875
28	14.0	4.3005	3.7417	3.8028	4.9488	3.7849	3.6856	3.4909	4.6954	4.1708	5.1709	4.1852	4.179773	-0.56302
29	14.5	4.2206	3.6773	3.738	4.8762	3.7141	3.6225	3.4226	4.6248	4.1044	5.0814	4.1004	4.107482	-0.63531
30	15.0	4.1413	3.6028	3.6666	4.7252	3.6402	3.553	3.3685	4.5432	4.0276	4.9928	4.0342	4.026855	-0.71594
31	15.5	4.074	3.5394	3.5112	4.6304	3.5878	3.4805	3.2809	4.4622	3.9515	4.9052	3.9684	3.944682	-0.79811
32	16.0	3.985	3.3852	3.427	4.5483	3.5149	3.4188	3.2208	4.3821	3.876	4.806	3.8924	3.859682	-0.88311
33	16.5	3.9079	3.3125	3.3644	4.467	3.4427	3.3474	3.1513	4.2958	3.7943	4.7202	3.817	3.783682	-0.95911
34	17.0	3.7786	3.2507	3.3022	4.375	3.3539	3.2696	3.0853	4.2059	3.7201	4.6352	3.7316	3.700736	-1.04205
35	17.5	3.7137	3.1791	3.2302	4.2952	3.293	3.1994	3.0265	4.1169	3.636	4.5511	3.6507	3.626527	-1.11626
36	18.0	3.6315	3.1011	3.1416	4.1981	3.2225	3.1297	2.9419	4.0398	3.5632	4.4559	3.5773	3.545691	-1.1971
37	18.5	3.5359	3.0206	3.0708	4.1087	3.1357	3.0537	2.8744	3.8447	3.4841	4.35	3.4942	3.452073	-1.29072
38 19.0		3.4622	2.9509	3.0007	4.0203	3.0763	2.9753	2.7911	3.7584	3.4022	4.2686	3.4324	3.376218	-1.36657
39 19.5		3.3788	2.8817	2.931	3.9328	2.9977	2.9073	2.7248	3.6416	3.3312	4.1764	3.3336	3.294264	-1.44853
40	20.0	3.3168	2.8059	2.8522	3.8462	2.9129	2.833	2.6496	3.5499	3.2539	4.0212	3.2527	3.208573	-1.53422

Results of sweep 1 with Av=0.413V, Rd=45ohm

• Average COM difference between σ_{RJ} =10mUI and 15mUI

- > 0.20028dB with PKG A without MLSE
- > 0.17787dB with PKG B with MLSE

Detail results with PKG A (without MLSE)

Results w	ith Av=0.4	13V for PK	A withou	t MLSE																									
σ_RJ	A_DD		CH01	CH02	CH03	CH04	CH05	CH06	CH07	CH08	CH09	CH10	CH11	CH12	CH13	CH14	CH15	CH16	CH17	CH18	CH19	CH20	CH21	CH22	CH23	CH24	CH25	CH26	AVG
10mUI	20mUI	COM	4.2152	3.8685	3.8791	5.1968	3.9857	3.9445	3.7551	4.7486	4.3688	3.9172	3.8493	5.9451	4.1802	3.8764	3.4526	4.6866	4.0408	3.8493	2.9504	3.2989	2.0915	2.7217	2.6507	2.6154	2.0915	1.9927	3.698946
15mUI	20mUI	сом	3.986	3.6913	3.6797	4.9196	3.7819	3.7284	3.5697	4.5046	4.1507	3.715	3.6487	5.6485	3.9582	3.6619	3.2609	4.4515	3.8223	3.6355	2.7813	3.1229	1.9491	2.5569	2.4872	2.4526	1.9491	1.8518	3.498665
		dCOM	-0.2292	-0.1772	-0.1994	-0.2772	-0.2038	-0.2161	-0.1854	-0.244	-0.2181	-0.2022	-0.2006	-0.2966	-0.222	-0.2145	-0.1917	-0.2351	-0.2185	-0.2138	-0.1691	-0.176	-0.1424	-0.1648	-0.1635	-0.1628	-0.1424	-0.1409	-0.20028

Detail results with PKG B (with MLSE)

Results w	ith Av=0.41	3V for PKG	B with ML	SE										
σ_RJ	A_DD		CH01	CH02	CH03	CH04	CH05	CH06	CH07	CH08	CH09	CH12	CH16	AVG
10mUI	20mUI	сом	5.1249	4.4556	4.4789	5.8034	4.6207	4.5294	4.3301	5.547	4.9694	6.049	5.0298	4.994382
15mUI	20mUI	сом	4.9044	4.2941	4.317	5.5984	4.4577	4.3728	4.1777	5.3544	4.801	5.8451	4.859	4.816509
dCOM -0.2205 -0.1615					-0.1619	-0.205	-0.163	-0.1566	-0.1524	-0.1926	-0.1684	-0.2039	-0.1708	-0.17787

Additional Sweep Conditions

- Sweep 3 : Sweep only Tr
 - Sweep Tr from 4.0ps to 6.0ps in 0.1ps step

Results of Sweep 3 w/ PKG A (without MLSE)

Sweeping only Tr degrades COM rather significantly

Results of Sweep 3 w/ PKG B (with MLSE)

Sweeping only Tr degrades COM rather significantly

Summary of Results of Sweep 3

- More study is needed to determine Tr for 200G KR/CR COM analysis.
 - Changing Tr from 4ps to 4.6ps has a minor impact of 0.18dB COM.
 - Implementing Tr=4.6ps over PVT might still be a challenge.

Sweep on	ly T_r					
T_r		COM (dB)			dCOM	
	PKG A	PKG B		PKG A	PKG B	
ps	w/o MLSE	w/ MLSE	AVG	w/o MLSE	w/ MLSE	AVG
	26 CHs	11 CHs		26 CHs	11 CHs	
4.0	3.452912	4.742791	4.097851	0	0	0
4.1	3.426023	4.712482	4.069252	-0.02689	-0.03031	-0.0286
4.2	3.405231	4.688118	4.046674	-0.04768	-0.05467	-0.05118
4.3	3.377885	4.6612	4.019542	-0.07503	-0.08159	-0.07831
4.4	3.344554	4.633909	3.989231	-0.10836	-0.10888	-0.10862
4.5	3.315277	4.592536	3.953907	-0.13763	-0.15025	-0.14394
4.6	3.281058	4.562464	3.921761	-0.17185	-0.18033	-0.17609
4.7	3.243115	4.525191	3.884153	-0.2098	-0.2176	-0.2137
4.8	3.210946	4.486718	3.848832	-0.24197	-0.25607	-0.24902
4.9	3.176635	4.444527	3.810581	-0.27628	-0.29826	-0.28727
5.0	3.145323	4.399191	3.772257	-0.30759	-0.3436	-0.32559
5.1	3.104046	4.349836	3.726941	-0.34887	-0.39295	-0.37091
5.2	3.061775	4.302673	3.682224	-0.39114	-0.44012	-0.41563
5.3	3.023071	4.258155	3.640613	-0.42984	-0.48464	-0.45724
5.4	2.981498	4.211536	3.596517	-0.47141	-0.53125	-0.50133
5.5	2.932187	4.163745	3.547966	-0.52072	-0.57905	-0.54988
5.6	2.890078	4.109364	3.499721	-0.56283	-0.63343	-0.59813
5.7	2.84614	4.048673	3.447406	-0.60677	-0.69412	-0.65045
5.8	2.791844	3.991636	3.39174	-0.66107	-0.75115	-0.70611
5.9	2.736114	3.931245	3.33368	-0.7168	-0.81155	-0.76417
6.0	2.677969	3.860518	3.269244	-0.77494	-0.88227	-0.82861

Detail Results of Sweep 3

**	With	PKG A	(without	MLSE)
----	------	-------	----------	-------

Sweep c	nly T_r w	th PKG A																										
T_r	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	CH9	CH10	CH11	CH12	CH13	CH14	CH15	CH16	CH17	CH18	CH19	CH20	CH21	CH22	CH23	CH24	CH25	CH26	AVG	dAVG
ps	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
4.	0 4.11	3.808	3.7906	5.0673	3.7017	3.6487	3.4397	4.5797	4.1382	3.6619	3.5175	5.7976	3.8493	3.6752	3.1728	4.437	3.7417	3.6487	2.6507	3.0485	1.7449	2.4411	2.3609	2.3154	1.8196	5 1.608	3.452912	. 0
4.	1 4.09	53 3.781	3.7695	5.0518	3.6884	3.6223	3.4268	4.5898	4.1382	3.6619	3.4785	5.7783	3.8088	3.6487	3.1229	4.4225	3.715	3.6091	2.6036	3.0116	1.7026	2.4066	2.3268	2.2928	1.7556	5 1.5663	3.426023	-0.02689
4.	2 4.08	24 3.781	3.7601	5.0362	3.7017	3.6091	3.4011	4.5597	4.1382	3.6752	3.4268	5.7578	3.7685	3.6223	3.0856	4.4225	3.715	3.5828	2.5685	2.9748	1.6604	2.3723	2.3041	2.2702	1.7237	7 1.5351	3.405231	-0.04768
4.	3 4.06	3.768	3.7364	5.0207	3.6752	3.6091	3.4139	4.5678	4.1382	3.6487	3.3754	5.7302	3.715	3.5828	3.0485	4.3937	3.6884	3.5566	2.522	2.9382	1.6184	2.3381	2.2702	2.2252	1.6815	5 1.4938	3.377885	-0.07503
4.	4 4.04	3.741	7 3.7509	4.9898	3.6619	3.596	3.3754	4.5483	4.1242	3.6355	3.3371	5.7134	3.6487	3.5175	2.9748	4.3793	3.6355	3.5305	2.4872	2.9017	1.5351	2.3154	2.214	2.1804	1.6604	1 1.4629	3.344554	-0.10836
4.	5 4.0	27 3.728	3.7114	4.9744	3.6355	3.5697	3.3754	4.5544	4.1102	3.6355	3.2735	5.6967	3.596	3.4785	2.926	4.3505	3.6223	3.4915	2.4526	2.8654	1.4834	2.2815	2.1804	2.147	1.6184	1.4116	3.315277	-0.13763
4.	6 3.99	3.701	7 3.715	4.9437	3.6355	3.5436	3.3498	4.5158	4.0963	3.6223	3.223	5.6632	3.5436	3.4526	2.8775	4.3219	3,5828	3.4526	2.4181	2.8172	1.4321	2,1916	2,147	2.1137	1.5767	7 1.3708	3.281058	-0.17185
4.	7 3.97	19 3.688	3.7017	4.9283	3,596	3.5436	3.3243	4.5415	4.0963	3,6091	3.1353	5.63	3.4915	3.4139	2.8172	4.2792	3,5566	3.3882	2,3609	2,7813	1.3912	2,1581	2.1026	2.0695	1.5248	3 1.2196	3.243115	-0.2098
4.	8 3.97	19 3.648	3.6752	4,8978	3.5828	3.5175	3.3116	4,518	4.0824	3,6091	3.0856	5,5968	3,4397	3.3754	2,7813	4,265	3,5305	3,3626	2.3268	2,7335	1.3303	2,1137	2.0695	2.0365	1.4526	5 1.1698	3.210946	-0.24197
4.	9 3.94	45 3.635	3.6619	4.8825	3.5566	3.4915	3.2989	4.5072	4.0685	3.596	3.0362	5.5803	3.3754	3.3243	2.7335	4.2366	3.5045	3.3116	2.2702	2.6979	1.2798	2.0695	2.0255	1.9927	1.3912	2 1.1202	3.176635	-0.27628
5.	0 3.93	3.609	1 3.6355	4.8521	3.5566	3.4655	3.2735	4.4953	4.0546	3.596	2.9748	5.5473	3.3243	3.2609	2.6743	4.2225	3.4655	3.3116	2.2252	2.6507	1.2196	2.0585	1.9927	1.9599	1.3505	5 1.071	3.145323	-0.30759
5.	1 3.	39 3.59	3.6223	4.8369	3.5305	3.4526	3.2356	4.4824	4.0546	3.5566	2.9139	5.5145	3.223	3.223	2.6154	4.1943	3.4526	3.2735	2.1693	2,6036	1.1698	2.0145	1.9057	1.8625	1.2999	9 1.0122	3.104046	-0.34887
5.	2 3.86	28 3.582	3.596	4.7916	3.5175	3.4268	3,223	4,4827	4,0408	3,5436	2.8654	5.4492	3.1728	3.1728	2,4872	4.1662	3,3882	3.2356	2,1248	2,5569	1.0415	1.9708	1.8841	1.8196	1.2496	5 0.95384	3.061775	-0.39114
5.	3 3.86	28 3.556	3,5697	4,7916	3,4915	3,4139	3,1979	4,4821	4.027	3.5305	2,7454	5,4329	3.1105	3.1229	2,4296	4,1382	3,3498	3.1853	2.0475	2,5104	0.96354	1.9165	1.8303	1.7982	1.1897	7 0.9055	3.023071	-0.42984
5.	4 3.84	3.530	3,5566	4,7614	3.4526	3.3882	3,1728	4.466	3.9857	3.5175	2.6743	5,4005	3.0485	3.0733	2.3723	4.0824	3.3116	3,1603	1.9927	2,4526	0.89587	1.8625	1.7875	1.7556	1.1301	0.83828	2,981498	-0.47141
5.	5 3.82	3.504	3,5305	4,7314	3.4268	3.3498	3,1353	4.437	3,9857	3,4915	2.6154	5.3521	2,9871	3.0239	2.3154	4.0546	3,2735	3.098	1.9382	2,4066	0.80963	1.8089	1.7449	1.7131	1.0317	7 0.64904	2,932187	-0.52072
5	6 3.80	38 3.478	3,5045	4,7015	3,4011	3,2989	3,1105	4.4225	3,9582	3.4655	2.5452	5,3361	2,9139	2,9748	2.2477	4.027	3,2356	3.0485	1.8841	2,3495	0.73369	1.7768	1.692	1.6604	0.98297	7 0.58377	2.890078	-0.56283
5	7 3.78	19 3.452	3,5045	4.6717	3.3754	3.2735	3.0856	4,4081	3,9445	3.4397	2.4756	5.288	2.8293	2,9139	2,1916	3,9994	3,2104	2,9993	1.8196	2,2702	0.65841	1.7237	1.6394	1.6184	0.91515	5 0.50977	2.84614	-0.60677
5	8 3.74	17 3.452	3.4785	4.6272	3,3498	3,2356	2,9993	4.3793	3.9172	3.4139	2,4066	5,2403	2.7454	2,7932	2,1248	3.9719	3,1105	2,9504	1.7556	2,2028	0.57448	1.6709	1.5871	1.5559	0.85744	0.44553	2,791844	-0.66107
5	9 3.7	15 3.413	3.4526	4.5977	3.3243	3,223	2,9993	4.3649	3.89	3,3882	2,2815	5,1927	2.6743	2.7454	1,9273	3,9309	3.0733	2.8896	1.6604	2,1581	0.43639	1,608	1.5248	1.5041	0.79058	3 0.37269	2,736114	-0.7168
6	0 3.67	52 3 388	3 4139	4.5536	3 223	3,1853	2.9748	4 3362	3 8764	3,3371	2.1916	5.1455	2,6036	2.6743	1.8625	3,8223	3 0116	2.8413	1.5975	2.0915	0.34553	1.5455	1 4732	1 4423	0.71481	0.30046	2 677969	-0.77494
	5.07	3.300		10000	0.220	0.1000	1 2.5740		0.0704	0.0071	2.1510	0.1400	2.0030	2.0743	210025	010220	0.0110	2.0413	2.0070	2.0515	0.04000	210400	214732	214425	0.71401	0.00040	2.0.7505	1 0

✤ With PKG B (with MLSE)

Sweep on	ly T_r with	PKG B											
T_r	CH1 CH2 dB dB		СНЗ	CH4	CH5	CH6	CH7	CH8	CH9	CH12	CH16	AVG	dAVG
ps	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
4.0	4.9269	4.2941	4.3284	5.5984	4.2864	4.1698	3.9583	5.329	4.7348	5.8174	4.7272	4.742791	C
4.1	4.9094	4.2319	4.3125	5.5792	4.2594	4.1433	3.9151	5.3038	4.7062	5.783	4.6935	4.712482	-0.03031
4.2	4.892	4.2162	4.2966	5.547	4.2326	4.0672	3.8721	5.2786	4.6758	5.8331	4.6581	4.688118	-0.05467
4.3	4.8746	4.2005	4.2694	5.5081	4.2059	4.0893	3.8331	5.2328	4.6172	5.8126	4.6297	4.6612	-0.08159
4.4	4.8866	4.1736	4.2536	5.4695	4.1793	4.0563	3.7905	5.2033	4.5939	5.765	4.6014	4.633909	-0.10888
4.5	4.8573	4.1468	4.2266	5.4309	4.146	4.0126	3.6958	5.166	4.5359	5.7383	4.5617	4.592536	-0.15025
4.6	4.8402	4.1313	4.1875	5.3926	4.1086	3.9731	3.6606	5.1536	4.5012	5.7047	4.5337	4.562464	-0.18033
4.7	4.806	4.0935	4.1607	5.3417	4.0824	3.9367	3.6187	5.1164	4.4553	5.6713	4.4944	4.525191	-0.2176
4.8	4.7585	4.1129	4.1228	5.2911	4.0235	3.8936	3.5736	5.0794	4.421	5.6451	4.4324	4.486718	-0.25607
4.9	4.7229	4.0866	4.1075	5.2534	3.98	3.8438	3.4875	5.0357	4.3868	5.5988	4.3868	4.444527	-0.29826
5.0	4.6325	4.0493	4.1226	5.2033	3.9298	3.7905	3.4533	4.9991	4.3346	5.5528	4.3233	4.399191	-0.3436
5.1	4.5807	4.0232	4.1004	5.1536	3.876	3.678	3.4022	4.9573	4.2895	5.5203	4.267	4.349836	-0.39295
5.2	4.5526	3.9972	4.07	5.0917	3.8225	3.636	3.3344	4.921	4.2111	5.4818	4.2111	4.302673	-0.44012
5.3	4.5247	3.9713	4.0549	5.0304	3.7693	3.5736	3.284	4.8728	4.1666	5.4366	4.1555	4.258155	-0.48464
5.4	4.4853	3.9348	4.0179	4.9626	3.7095	3.5253	3.2139	4.818	4.1113	5.448	4.1003	4.211536	-0.53125
5.5	4.4576	3.9092	3.992	4.921	3.636	3.4635	3.1642	4.7703	4.0563	5.4035	4.0276	4.163745	-0.57905
5.6	4.4072	3.8622	3.9554	4.8419	3.5839	3.4022	3.098	4.7348	4.0126	5.3465	3.9583	4.109364	-0.63343
5.7	4.3686	3.8263	3.9298	4.7891	3.4737	3.3344	3.0225	4.6826	3.919	5.3027	3.8867	4.048673	-0.69412
5.8	4.3189	3.7905	3.8828	4.718	3.4533	3.2639	2.9281	4.6289	3.8652	5.2466	3.8118	3.991636	-0.75115
5.9	4.2558	3.7269	3.8331	4.6475	3.392	3.194	2.8702	4.5823	3.7905	5.2033	3.7481	3.931245	-0.81155
6.0	4.1888	3.6743	3.7799	4.5706	3.3142	3.1079	2.8223	4.5243	3.7201	5.0958	3.6675	3.860518	-0.88227

COM parameters for C2M channels (No MLSE, host package A, module 8mm package)

ImageNetwork <th< th=""><th></th><th>Table 93A-1 parameters</th><th></th><th colspan="3">I/O control</th><th colspan="4">Table 93A–3 parameters</th><th>SAVE_CONFIG2MAT</th><th></th></th<>		Table 93A-1 parameters		I/O control			Table 93A–3 parameters				SAVE_CONFIG2MAT			
1 m106.25666667686	Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	Parameter	Setting	Units	Information		Receiver testing	
Image <th< td=""><td>f_b</td><td>106.25</td><td>GBd</td><td></td><td>DISPLAY_WINDOW</td><td>0</td><td>logical</td><td>package_tl_gamma0_a1_a2</td><td>[5e-4 8.9e-4 2e-4]</td><td></td><td></td><td>RX_CALIBRATION</td><td>0</td><td>logical</td></th<>	f_b	106.25	GBd		DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[5e-4 8.9e-4 2e-4]			RX_CALIBRATION	0	logical
Debs.Debs.Dess.BusULMeubl.CM.(Meh) <td>f_min</td> <td>0.05</td> <td>GHz</td> <td></td> <td>CSV_REPORT</td> <td>1</td> <td>logical</td> <td>package_tl_tau</td> <td>0.006141</td> <td>ns/mm</td> <td></td> <td>Sigma BBN step</td> <td>5.00E-03</td> <td>v</td>	f_min	0.05	GHz		CSV_REPORT	1	logical	package_tl_tau	0.006141	ns/mm		Sigma BBN step	5.00E-03	v
C.4 (05.44	Delta_f	0.01	GHz		RESULT_DIR	.\results\C2M_{date}\		package_Z_c	[87.5 87.5 ; 92.5 92.5; 100 100; 100 100]	Ohm			ICN parameters	
L C 	C_d	[0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical	z_p select	[2]		[test cases to run]	f_v	0.588	Fb
Cb(D3+4 d.Re4)(m)(T RA)(DA MP3 ACM)(DA MP3 ACM)	L_s	[0.13 0.15 0.14; 0.13 0.15 0.14]	nH	[TX RX]	Port Order	[1324]		z_p (TX)	[1233;1.81.8;00;00]	mm	[test cases]	f_f	0.278	Fb
R R AO AO ACDM_CONTRRUTO1 B COM_CONTRRUTO1 C C AO C	C_b	[0.3e-4 0.3e-4]	nF	[TX RX]	RUNTAG	C2M TP1a_COM_model		z_p (NEXT)	[88;00;00;00]	mm	[test cases]	f_n	0.278	Fb
R AQ A<	R_0	50	Ohm		COM_CONTRIBUTION	1	logical	z_p (FEXT)	[1233;1.81.8;00;00]	mm	[test cases]	f_2	61.625	GHz
A.v0.38Vvv <td>R_d</td> <td>[45 45]</td> <td>Ohm</td> <td>[TX RX]</td> <td></td> <td></td> <td></td> <td>z_p (RX)</td> <td>[88;00;00;00]</td> <td>mm</td> <td>[test cases]</td> <td>A_ft</td> <td>0.450</td> <td>v</td>	R_d	[45 45]	Ohm	[TX RX]				z_p (RX)	[88;00;00;00]	mm	[test cases]	A_ft	0.450	v
Λ_{ee} 0.386 \vee ψ ψ/r	A_v	0.386	V	vp/vf=	TDR and	ERL options		C_p	[0.4e-4 0.4e-4]	nF	[TX RX]	A_nt	0.450	v
A.e0.6VImageBell1Image <t< td=""><td>A_fe</td><td>0.386</td><td>V</td><td>vp/vf=</td><td>TDR</td><td>1</td><td>logical</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	A_fe	0.386	V	vp/vf=	TDR	1	logical							
L 4 - 6 U 0 10^{-1} <td>A_ne</td> <td>0.6</td> <td>V</td> <td></td> <td>ERL</td> <td>1</td> <td>logical</td> <td></td> <td>Filter: Rx FFE</td> <td></td> <td></td> <td>Parameter</td> <td>Setting</td> <td></td>	A_ne	0.6	V		ERL	1	logical		Filter: Rx FFE			Parameter	Setting	
M 32 0	L	4			ERL_ONLY	0	ns	ffe_pre_tap_len	6	UI		board_tl_gamma0_a1_a2	[0 6.44084e-4 3.6036e-05]	1.4 db/in @ 53.125G
Internet Internet <t< td=""><td>м</td><td>32</td><td></td><td></td><td>TR_TDR</td><td>0.01</td><td></td><td>ffe_post_tap_len</td><td>25</td><td>UI</td><td></td><td>board_tl_tau</td><td>5.790E-03</td><td>ns/mm</td></t<>	м	32			TR_TDR	0.01		ffe_post_tap_len	25	UI		board_tl_tau	5.790E-03	ns/mm
f.r 0.55 0 min 1 0 ffe_main_corr_min 0.7.7 0 0 2_b(P(X) 3.2 mm d(1) (-3.00.50) 0 (min.stepma) 0.6.84 0 0 0.7 0 0 2_b(P(X) 3.2 mm d(2) (-6.50.1) (min.stepma) 0.6.84 0 0 0.7 0 0 2_b(P(X) 3.2 mm d(3) 0 0 (min.stepma) 0.6.84 0 0 0.7 0 2_b(P(X) 3.2 mm d(4) 0 (min.stepma) 0.6.84 0 0 0.7<		filter and Eq			N	3000	logical	ffe_tap_step_size	0			board_Z_c	100	Ohm
d(i) 0.63.00% i minstegnasi 0 minstegnasi	f_r	0.58	*fb		TDR_Butterworth	1		ffe_main_cursor_min	0.7			z_bp (TX)	32	mm
(-1) (-3.3.05) (-10.550.1) <td< td=""><td>c(0)</td><td>0.55</td><td></td><td>min</td><td>beta_x</td><td>0</td><td></td><td>ffe_pre_tap1_max</td><td>0.7</td><td></td><td></td><td>z_bp (NEXT)</td><td>32</td><td>mm</td></td<>	c(0)	0.55		min	beta_x	0		ffe_pre_tap1_max	0.7			z_bp (NEXT)	32	mm
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	c(-1)	[-0.3:0.05:0]		[min:step:max]	rho_x	0.618		ffe_post_tap1_max	0.7			z_bp (FEXT)	32	mm
c(3)0(m)00 <td>c(-2)</td> <td>[0:.05:0.1]</td> <td></td> <td>[min:step:max]</td> <td>TDR_W_TXPKG</td> <td>0</td> <td>UI</td> <td>ffe_tapn_max</td> <td>0.7</td> <td></td> <td></td> <td>z_bp (RX)</td> <td>32</td> <td>mm</td>	c(-2)	[0:.05:0.1]		[min:step:max]	TDR_W_TXPKG	0	UI	ffe_tapn_max	0.7			z_bp (RX)	32	mm
cf-4) 0 (minstepma) fiture delaytime (00) (0) (0) (C_1) (0,2-40) (0,2-4) (0,2-1) <t< td=""><td>c(-3)</td><td>0</td><td></td><td>[min:step:max]</td><td>N_bx</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>C_0</td><td>[0.2e-4 0]</td><td>nF</td></t<>	c(-3)	0		[min:step:max]	N_bx	0						C_0	[0.2e-4 0]	nF
(1)0(minstepras)Two NoscritterERP set heshold100B(minstepras)(minstepras)00(minstepras)(mins	c(-4)	0		[min:step:max]	fixture delay time	[00]			Operational			C_1	[0.2e-4 0]	nF
N b1UIMMMMMMMMMMMSeletony (retargle, gaussian)seletony (retargle, gaus	c(1)	0		[min:step:max]	Tukey_Window	1		ERL Pass threshold	10	dB		Include PCB	0	logical
b max(1) 0.75 A //dfe1 Sigma_RI 0.01 UI VEC Pass threshold 10 db Hittogram, Window Weigh gaussa selection b max(1) 0 6 A//dfe1 AD 0.02 UI b_min(1) 0 6 A//dfe1 eta_0 6.00E-09 V2/dFe T 4.00E-03 ns concess ns ns concess ns ns <	N_b	1	UI		Noi	e, jitter		COM Pass threshold	3	db		Seletion	s (rectangle, gaussian,dual_ra	ayleigh, triangle
b mat(2.m)0.3As/dfe2bAs/dfe2bA DD0.02UDER 02.006-05 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ <td>b_max(1)</td> <td>0.75</td> <td></td> <td>As/dffe1</td> <td>sigma_RJ</td> <td>0.01</td> <td>UI</td> <td>VEC Pass threshold</td> <td>10</td> <td>db</td> <td></td> <td>Histogram_Window_Weigh</td> <td>gaussian</td> <td>selection</td>	b_max(1)	0.75		As/dffe1	sigma_RJ	0.01	UI	VEC Pass threshold	10	db		Histogram_Window_Weigh	gaussian	selection
b min(1)0K/dffe1eta_06.0e_09V/dfe2T4.0e_03ns(most and	b_max(2N_b)	0.3		As/dfe2N_b	A_DD	0.02	UI	DER_0	2.00E-05			Qr	0.02	UI
b 0.015 S $Ac/dre2N_{D}$ SNR,TX 33 dB $FORCE,TR$ 1 $logical$ $logical$ N, hgg 0 $0.12 a groups$ g,CC $(1.511:3)$ dB $(minstep:max)$ R_LM 0.95 M M 0 N M $N hgf$ 4 $a gape group$ f_2 2.56 GH_2 CR_LM 0.95 M O M O $N hgf$ 4 $a gape group$ f_1D 4.000 GH_2 CR_LM $O.95$ M O OL $N hgf$ 4 $a gape group$ f_1D 4.000 GH_2 CR_LM $O.95$ M O N OL $N hgf$ A $a gape group$ f_1D 4.000 GH_2 CR_LM $O.95$ M $ORNORMORMORMORMORMORMM$	b_min(1)	0		As/dffe1	eta_0	6.00E-09	V^2/GHz	T_r	4.00E-03	ns			Floating Tap Control	
g_CC[151:3]db[minsteg:max]R_M0.95M Mn_VCC_Test 0mvmvM_bf4tepseegroupf_225.66H26H2PMD_typeC2CNN_bf80Uspantorfloating tapsf_p144.006H26H2EH_min5Valuebmaxg0.2max DF2 value for floating tapsf_p255.006H2EH_max1000Value8160t RSS_MAX0.1rstaltaplinitg_0C, HP_PZ1.3281256H2Samples for C2M1000samples/U(U) start of tall papilinitf_HP_PZ1.3281256H2Samples for C2M1000samples/U(U) start of tall papilinitf_m15.51.3281256H2Samples for C2M1000samples/U(U) start of tall papilinitf_m15.51.3281256H25.51000samples/U	b_min(2N_b)	-0.15	S	As/dfe2N_b	SNR_TX	33	dB	FORCE_TR	1	logical		N_bg	0	0 1 2 or 3 groups
f_2 22.16 6Hz 0 M_f 80 Urgan of floating tags f_p1 40.00 6Hz 0 MD_fvpe C2C I N_f 80 Urgan of floating tags f_p2 40.00 6Hz 0 MD_fvpe 5 Value 0 B_float_RSS_MAX 0.1 rstaltap lmit g_0C_HP [-5:1:0] [minstep:max] 7.0 50 mU N_f 80.0 Urgan OF floating tags f_HP_Z 1.328125 6Hz [minstep:max] 7.0 50 mU N_f 80.0 Urgan OF floating tags f_HP_Z 1.328125 6Hz 6Hz 6 7.0 50 mU N_f 80.0 Urgan OF floating tags f_HP_Z 1.328125 6Hz 6Hz 6 1000 samples (or C2N) mU N_f 80.0 Urgan OF floating tags f_HP_Z 1.328125 6Hz 6Hz 6Hz 6Hz 1000 samples (or C2N) mU N_f N_f 80.0 Urgan OF floating tags f_HP_Z 1.328125 6Hz <th< td=""><td>g_DC</td><td>[-15:1:-3]</td><td>dB</td><td>[min:step:max]</td><td>R_LM</td><td>0.95</td><td></td><td>Min_VEO_Test</td><td>0</td><td>mV</td><td></td><td>N_bf</td><td>4</td><td>taps per group</td></th<>	g_DC	[-15:1:-3]	dB	[min:step:max]	R_LM	0.95		Min_VEO_Test	0	mV		N_bf	4	taps per group
f_1140.006Hz6Hz6Hz6Hz5HzValue6 bmarg0.2max pEr value for floating tagsf_p256.006Hz66H6H6H1000Value8 float RSS_MAX0.1rstall tap limitg_DC, PP[5:10][minstep:max][minstep:max]7_050mUN tail stalt160110 tap limitf_HP_PZ1.3281256Hz6Hz6Hz5amples for CA100samples/U77	f_z	25.16	GHz					PMD_type	C2C			N_f	80	UI span for floating taps
f_2 55.00 GH	f_p1	40.00	GHz					EH_min	5	Value		bmaxg	0.2	max DFE value for floating taps
g_DC_HP [minstep:max] [minstep:max]<	f_p2	56.00	GHz					EH_max	1000	Value		B_float_RSS_MAX	0.1	rss tail tap limit
f_HP_PZ 1.328125 GHz GHz Samples_for_C2M 100 samples/U f_HP_PZ 1.328125 1.328125 1.00 1.00 1.00 1.00 f_HP_PZ 1.00 1.00 0.00 1.00 1.00 1.00 f_HP_PZ 1.00 0.00 0.00 1.00 1.00 1.00 f_HP_PZ 1.00 0.00 0.00 0.00 1.00 1.00	g_DC_HP	[-5:1:0]		[min:step:max]				T_O	50	mUI		N_tail_start	16	(UI) start of tail taps limit
ts_anchor 1 benarts_jaff_01a_2211 sample_adjustment [-812] mil.adf_02_203016 EW 1 mil.adf_02_203016 MLSE 0 ran_3dj_elec_02_230622 Local Search 2	f_HP_PZ	1.328125	GHz					samples_for_C2M	100	samples/U				
sample_adjustment [-812] mli_3df_02_220316 EW 1 ran_3dj_elec_02_230622 MLSE 0 mli_3df_olec_02_230622 Local Search 2 d								ts_anchor	1			benartsi_3df_01a_2211		
EW 1 ran_3dj_elec_02_230622 MLSE 0 Local Search 2								sample_adjustment	[-8 12]			mli_3df_02_220316		
MLSE 0 Local Search 2								EW	1			ran_3dj_elec_02_230622		
Local Search 2								MLSE	0					
								Local Search	2					

COM parameters for C2M channels (No MLSE, host package B, module 8mm package)

	Table 93A-1 parameters			I/O	control	Table 93A–3 parameters					SAVE_CONFIG2MAT	0	
Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	Parameter	Setting	Units	Information		Receiver testing	
f_b	106.25	GBd		DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[5e-4 6.5e-4 3e-4]			RX_CALIBRATION	0	logical
f_min	0.05	GHz		CSV_REPORT	1	logical	package_tl_tau	0.006141	ns/mm		Sigma BBN step	5.00E-03	V
Delta_f	0.01	GHz		RESULT_DIR	.\results\C2M_{date}\		package_Z_c	[92 92 ; 70 70; 80 80; 100 100]	Ohm			ICN parameters	
C_d	[0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical	z_p select	[4]		[test cases to run]	f_v	0.588	Fb
L_S	[0.13 0.15 0.14; 0.13 0.15 0.14]	nH	[TX RX]	Port Order	[1324]		z_p (TX)	[8243045;1111;1111;0.50.50.50.5]	mm	[test cases]	f_f	0.278	Fb
C_b	[0.3e-4 0.3e-4]	nF	[TX RX]	RUNTAG	C2M TP1a_COM_model		z_p (NEXT)	[8888;0000;0000;0000]	mm	[test cases]	f_n	0.278	Fb
R_0	50	Ohm		COM_CONTRIBUTION	1	logical	z_p (FEXT)	[8243045;1111;1111;0.50.50.50.5]	mm	[test cases]	f_2	61.625	GHz
R_d	[45 45]	Ohm	[TX RX]				z_p (RX)	[8888;0000;0000;0000]	mm	[test cases]	A_ft	0.450	v
A_v	0.386	v	vp/vf=	TDR and	ERL options		C_p	[0.4e-4 0.4e-4]	nF	[TX RX]	A_nt	0.450	V
A_fe	0.386	v	vp/vf=	TDR	1	logical							
A_ne	0.6	v		ERL	1	logical		Filter: Rx FFE			Parameter	Setting	
L	4			ERL_ONLY	0	ns	ffe_pre_tap_len	6	UI		board_tl_gamma0_a1_a2	[0 6.44084e-4 3.6036e-05]	1.4 db/in @ 53.125G
м	32			TR_TDR	0.01		ffe_post_tap_len	25	UI		board_tl_tau	5.790E-03	ns/mm
	filter and Eq			N	3000	logical	ffe_tap_step_size	0			board_Z_c	100	Ohm
f_r	0.58	*fb		TDR_Butterworth	1		ffe_main_cursor_min	0.7			z_bp (TX)	32	mm
c(0)	0.55		min	beta_x	0		ffe_pre_tap1_max	0.7			z_bp (NEXT)	32	mm
c(-1)	[-0.3:0.05:0]		[min:step:max]	rho_x	0.618		ffe_post_tap1_max	0.7			z_bp (FEXT)	32	mm
c(-2)	[0:.05:0.1]		[min:step:max]	TDR_W_TXPKG	0	UI	ffe_tapn_max	0.7			z_bp (RX)	32	mm
c(-3)	0		[min:step:max]	N_bx	0						C_0	[0.2e-4 0]	nF
c(-4)	0		[min:step:max]	fixture delay time	[00]			Operational			C_1	[0.2e-4 0]	nF
c(1)	0		[min:step:max]	Tukey_Window	1		ERL Pass threshold	10	dB		Include PCB	0	logical
N_b	1	UI		Noi	se, jitter		COM Pass threshold	3	db		Seletion	s (rectangle, gaussian, dual_ration in the second s	ayleigh, triangle
b_max(1)	0.75		As/dffe1	sigma_RJ	0.01	UI	VEC Pass threshold	10	db		Histogram_Window_Weigh	gaussian	selection
b_max(2N_b)	0.3		As/dfe2N_b	A_DD	0.02	UI	DER_0	2.00E-05			Qr	0.02	UI
b_min(1)	0		As/dffe1	eta_0	6.00E-09	V^2/GHz	T_r	4.00E-03	ns			Floating Tap Control	
b_min(2N_b)	-0.15	S	As/dfe2N_b	SNR_TX	33	dB	FORCE_TR	1	logical		N_bg	0	012 or 3 groups
g_DC	[-15:1:-3]	dB	[min:step:max]	R_LM	0.95		Min_VEO_Test	0	mV		N_bf	4	taps per group
f_z	25.16	GHz					PMD_type	C2C			N_f	80	UI span for floating taps
f_p1	40.00	GHz					EH_min	5	Value		bmaxg	0.2	max DFE value for floating tap
f_p2	56.00	GHz					EH_max	1000	Value		B_float_RSS_MAX	0.1	rss tail tap limit
g_DC_HP	[-5:1:0]		[min:step:max]				T_0	50	mUI		N_tail_start	16	(UI) start of tail taps limit
f_HP_PZ	1.328125	GHz					samples_for_C2M	100	samples/U	1			
							ts_anchor	1			benartsi_3df_01a_2211		
							sample_adjustment	[-8 12]			mli_3df_02_220316		
							EW	1			ran_3dj_elec_02_230622		
							MLSE	0					
							Local Search	2					

Results of Sweep 1&2 for C2M channels

✓ Used 26 C2M channels selected in lusted_3dj_02a_2309, slide 12

- Sweeping only σ_{RJ} degrades COM only moderately
- Sweeping σ_{RJ} and A_{DD} results in larger COM degradation

