Fiber dispersion topic contribution summary

Mark Nowell – Cisco

Presented data

ps/nm/km

	ITU-T Worst case		ferretti_3dj_01a_2401		rodes_3dj_01_2403		parsons_3dj_01_2403	
	2km	10km	2km	10km	2km	10km	2km	10km
	CWDM	LWDM	CWDM	LWDM	CWDM	LWDM	CWDM	гмри
Positive Dispersion (ps/nm)	6.62	9.27	6.21	4.57	-	4.3	5.63	0.48
Negative Dispersion (ps/nm)	-11.75	-28.05	-11.03	-26.1	-	-23.2	-10.46	-2.38
								\smile
			Improvement vs WC (%)		Improvement vs WC (%)		Improvement vs WC (%)	
Positive dispersion			-6%	-51%		-54%	-15%	-48%
Negative dispersion			-6%	-7%		-17%	-11%	-15%

Simple x10 extrapolation which isn't correct

Next steps:

- Continue to evolve models, data sets 2-3 ad hocs upcoming, May interim, ...
- Consider reach, transceiver statistics apply against fiber statistics what is user risk?

Decisions to adopt values needed by D1.2 (before D1.3 latest)- but continued refinement will happen