Proposal for training patterns for the start-up protocol

Adee Ran, Cisco Kent Lusted, Intel

Supporters

- Omer Sella, Imperial College London Mike Wingrove, Ciena
- Whay Lee, Marvell
- Mike Dudek, Marvell
- Margaret Johnston, Cadence
- Mau-Lin Wu, Mediatek
- Pirooz Tooyserkani, Cisco
- Arthur Marris, Cadence
- Zvi Rechtman, NVIDIA
- Ali Ghiasi, Ghiasi Quantum/Marvell

- Luz Osorio, Ciena
- Paul Brooks, Viavi
- Matt Brown, Alphawave
- David Cassan, Alphwave
- Leon Bruckman, Huawei
- Dave Estes, Spirent

Introduction

- The issues with existing training patterns were initially presented in the ad hoc presentation <u>ran_3dj_elec_01_240208</u>.
 - Brief summary of the problem statement: the existing patterns are created by zeropadding a PRBS13Q sequence to a length that is a multiple of 32 UI. When these patterns are processed by a time-interleaved (polyphase) ADC, the pattern is repetitive with a short period, and is unsuitable for training.
- A proposal was made to add new training patterns based on free-running PRBS13 or PRBS31 generator, with no other change of the training frame format.
 - These new patterns are very simple to implement and test and free-running PRBS generators are already included in most SerDes.
- It was demonstrated that the proposed training pattern has more uniform DC content across 64 phases than the existing ones.
 - Other properties are also improved by this choice.

Proposal

- Keep the existing training patterns and their encoding in the **modulation and precoding request** field (PAM2, PAM4, PAM4 with precoding based on PRBS13)
- Add another training pattern created from a **free-running PRBS13 generator** (with same per-lane polynomial as in the existing pattern), without the zero pad symbols
 - The Marker/Control/Status DME portion periodically overrides the PRBS13 generator output (288 UI every 16672 UI same as in clause 136)
 - The PRBS generator is not stopped or reset
- Add a similar training pattern using **free-running PRBS31** instead of PRBS13, without changing the frame structure
 - In this case, the same polynomial (Eq 49-2 from IEEE Std. 802.3-2022) is used in all lanes. The offset between PRBS31 generators on different lanes should be made sufficiently large to effectively decorrelate their patterns.
 - Two options when used with PAM4 encoding: with/without precoding.
- The new patterns will be selectable in training using a "pattern request" variable (replacing the "modulation and precoding" variable) in the control and status fields.
- Training starts with PAM2 as in clause 136/162. A receiver may ask to switch to another pattern (possibly more than once) based on its preference.
 - The final pattern cannot be PAM2 (same as CI 136/162).
 - Precoding is used after training if the final training pattern included precoding.
- All the above are to be added in Annex 176A.

Suggested changes to the control field

Suggested changes to the status field

Current status field structure (Clause 162)

Proposed change

14:12	Reserved	Transmit as 0, ignore on receipt	14	One	Transmit as 1
			13	Reserved	Transmit as 0, ignore on receipt
			12:10 Patter Same va "Pattern r the con	Pattern status	12 11 10 1 1 1 = PAM4 free-running PRBS31 with precoding 1 0 1 = Reserved
11:10	Modulation and precoding Status	11 10 1 1 = PAM4 with precoding 1 0 = PAM4 0 1 = Reserved 0 0 = PAM2		me values as in tern request" in e control field.	 0 1 1 = PAM4 free-running PRBS31 0 0 1 = PAM2 free-running PRBS31 1 1 0 = PAM4 PRBS13 with precoding 1 0 0 = PAM4 PRBS13 0 1 0 = PAM4 free-running PRBS13 0 0 0 = PAM2 PRBS13

Thanks!

Problem statement

- Currently the training patterns are created from two full cycles of PRBS13Q followed two 0 symbols (zero pad)
- This makes the training pattern consistent across frames
- However, it can create issues in prevalent timeinterleaved (polyphase) ADC implementations...
 - For example, with a 64-phase ADC, the pattern seen on each phase of the ADC repeats itself every two frames (it has a period of 16672/64*2=521 samples)
 - These patterns are not PRBS of any kind, and are unfriendly for calibration/adaptation algorithms
 - Notably, these patterns are very unbalanced (see <u>next slide</u>)
- The training pattern spectrum and statistics are not representative of "mission" data
 - Once data mode is entered, the statistics change considerably
- Moving to 200G/lane, accurate calibration and training will be more important...
 - We should get this fixed!

Figure 136–3—Training frame structure

Means of the clause 136 training patterns on each phase of a 64-UI subsampled pattern

mod_select: 0=PAM2, 1=PAM4, 2=PAM4 with precoding

Means of the modified training patterns (free-running PRBS13), same subsampling

Training pattern only

mod_select: 0=PAM2, 1=PAM4, 2=PAM4 with precoding