An Analysis Approach to MLSE (and RxFFE) Implementation Penalty

Hossein Shakiba Huawei Technologies Canada March 2024

Outline

- Introduction
- Equation U1.c
- Pre-MLSE Screening
- Sequence Truncation
- $\bullet \alpha$ Mismatch
- Quantization Noise
- Summary
- Backup Slides

Introduction

- In the January 2024 Interim meeting equation U1.c was adopted to calculate and represent MLSE effect in COM reference receivers
- MLSE implementation penalty (IP) in this equation is TBD
- This contribution highlights a few common implementation challenges and describes an approach to formulate their effects
- Quantization (or equivalent) noise between CTLE and RxFFE influences optimization of equalization (balance between CTLE and RxFFE) that consequently changes noise and its coloring and should be analyzed in the presence of RxFFE (not just MLSE)
- A set of 112 channels was used for generating test data (see backup slides for channel info)
- COM version: com_ieee8023_93a_430_hs1p0 (see backup slides for COM config)
 - .hs1p0 customizes COM to add quantization noise
- A separate function to execute U1.c, including implementation penalties specific to MLSE

Not integrated to speed up massive sweeps
 March 2024

Equation U1.c

$$\Delta COM \approx 20 \log_{10} \left(\frac{1}{A_s} CDF_{noise}^{-1} \left(1 - \frac{2}{3} DER_{MLSE} \right) \right) - IP$$

$$DER_{MLSE} \approx 2 \sum_{j=1}^{\infty} \left(\frac{3}{4} \right)^j \left(1 - CDF_{noise, JEE} \left(A_s \frac{\left(\text{trace}(\rho_{noise, JEE}) \right)^{\frac{3}{2}}}{\sqrt{\sum_{vertical} \sum_{horizental} (\rho_{noise, JEE})}} \right) \right)$$

$$PDF_{noise, JEE}(x)^{\dagger} = PDF_{noise}(x) * \operatorname{conv}_{i=2}^j \frac{1}{1-\alpha} PDF_{noise} \left(\frac{x}{1-\alpha} \right) * \frac{1}{\alpha} PDF_{noise} \left(\frac{x}{\alpha} \right)$$

$$\rho_{noise, JEE} = \begin{bmatrix} 1 & -(1-\alpha)\rho_1 & +(1-\alpha)\rho_2 & \cdots & (-1)^{j+1}\alpha\rho_j \\ -(1-\alpha)\rho_{-1} & (1-\alpha)^2 \rho_1 & \cdots & (-1)^{j}\alpha(1-\alpha)\rho_{j-1} \\ +(1-\alpha)\rho_{-2} & -(1-\alpha)^2\rho_{-1} & (1-\alpha)^2 \\ \vdots & \vdots & \vdots \\ (-1)^{j+1}\alpha\rho_{-j} & (-1)^{j}\alpha(1-\alpha)\rho_{-(j-1)} & (-1)^{j-1}\alpha(1-\alpha)\rho_{-(j-2)} & \cdots & \alpha^2 \end{bmatrix} \qquad \longleftarrow \begin{array}{l} \alpha \text{ is the DFE tap and} \\ \rho_i \text{ 's are } R_{NN} \text{ values} \\ \text{ symmetrically} \\ \text{ around } \rho_0 = 1 \end{array}$$

$$R_{NN}(\tau) = \mathcal{F}^{-1}\{PSD_{noise}\}$$

$$PSD_{Noise} = PSD_{Rx \ Noise} + PSD_{Tx \ Noise} + PSD_{Xtalk \ Noise} + PSD_{Jitter \ Noise} + PSD_{ISI \ Noise}$$

 \checkmark At the Rx FFE Output

[†] Note that this is the same equation as in previous presentations, but with PDF normalization explicitly shown

March 2024

IEEE 802.3 Plenary

Pre-MLSE Screening

- There was a concern with cases where although MLSE output may meet COM target, its input may not be adequate for clock recovery
- These case are not likely since MLSE improvement is not huge (maximum a couple of dBs)
- Regardless, a pre-screening can be put in place to ignore MLSE for these cases
- The easiest screening is to ignore cases with poor pre-MLSE COM
 - ✤ Screening based on pre-MLSE COM < 0 was implemented in U0 in COM v4.0 beta</p>
 - * Since COM is relative and based on the target error rate, it is not a direct proxy of the quality of signal
- A better approach is to monitor a more direct proxy such as error rate (or SNR) at the DFE output
 - Easy to implement as COM already generates this information
 - ✤ Need to agree on the CDR error rate or SNR threshold

Sequence Truncation

- One of the practical simplifications to MLSE is to limit length of the sequence
 To reduce cost and latency
- There are several ways this can be implemented, but they all share a similar concept
- The case considered here for analysis is the extreme case
 - ✤ Reduces the sequence processing and trace-back to the truncated length
- Error events longer than the truncated sequence length (*sl*) will not converge (sub-optimum, hence penalty)
- See backup slides for more details

Equation U1.c Including Sequence Truncation Penalty

$$PDF_{noise, jEE}(x) = \begin{cases} PDF_{noise}(x) * \operatorname{conv}_{i=2}^{j} \frac{1}{1-\alpha} PDF_{noise}\left(\frac{x}{1-\alpha}\right) * \frac{1}{\alpha} PDF_{noise}\left(\frac{x}{\alpha}\right) &, j < s \\ PDF_{noise}(x) * \operatorname{conv}_{i=2}^{sl} \frac{1}{1-\alpha} PDF_{noise}\left(\frac{x}{1-\alpha}\right) & j = s \\ \rho_{noise, jEE} = \begin{cases} \rho_{noise, jEE}((j+1) \times (j+1)) &, j < s \\ \rho_{noise, jEE}((1:sl) \times (1:sl)) & j = s \\ \rho_{noise, jEE}((1:sl) \times (1:sl)) & j = s \\ \end{cases} \\ DER_{MLSE} \approx 2 \sum_{j=1}^{sl} \left(\frac{3}{4}\right)^{j} \left(1 - CDF_{noise, jEE}\left(A_{s} \frac{\left(\operatorname{trace}(\rho_{noise, jEE})\right)^{\frac{3}{2}}}{\sqrt{\sum_{vertical} \sum_{horizental}(\rho_{noise, jEE})}}\right) \right) \\ \Delta COM \approx 20 \log_{10} \left(\frac{1}{A_{s}} CDF_{noise}^{-1}\left(1 - \frac{2}{3} DER_{MLSE}\right)\right) - IP(other than Truncation) \end{cases}$$

Test Results – Sequence Truncation

• Truncating to shorter than 16-20 samples causes noticeable drop of Δ COM for several cases

α Mismatch

- What if the MLSE parameter is not exactly matched to the post-curser of the equalized pulse response?
 - * Post-curser = α
 - * MLSE parameter = $\alpha' = \alpha + \Delta \alpha$
- MLSE error analysis (<u>shakiba_3dj_elec_01a_230504.pdf</u>) shows that this mismatch can be modeled with a new noise component with this PDF:

- Add this noise to the noise and proceed with U1.c
- See backup slides for more details

Equation U1.c Including α Mismatch Penalty

 $PDF_{noise+mismatch} = PDF_{noise} * PDF_{\Delta\alpha L}$

$$PDF_{noise+mismatch,jEE}(x) = \begin{cases} PDF_{noise+mismatch}(x) * \operatorname{conv}_{i=2}^{j} \frac{1}{1-\alpha'} PDF_{noise+mismatch}\left(\frac{x}{1-\alpha'}\right) * \frac{1}{\alpha'} PDF_{noise+mismatch}\left(\frac{x}{\alpha'}\right) &, j < sl \\ PDF_{noise+mismatch}(x) * \operatorname{conv}_{i=2}^{sl} \frac{1}{1-\alpha'} PDF_{noise+mismatch}\left(\frac{x}{1-\alpha'}\right) & j = sl \end{cases}$$

$$\rho_{noise,jEE} = \begin{cases} \rho_{noise,jEE} \left((j+1) \times (j+1) \right) &, j < sl \\ \rho_{noise,jEE} \left((1:sl) \times (1:sl) \right) & j = sl \end{cases}$$

$$DER_{MLSE} \approx 2\sum_{j=1}^{sl} \left(\frac{3}{4}\right)^{j} \left(1 - CDF_{noise+mismatch,jEE} \left(A_{s} \frac{\left(\operatorname{trace}(\rho_{noise,jEE})\right)^{\frac{3}{2}}}{\sqrt{\sum_{vertical} \sum_{horizental}(\rho_{noise,jEE})}}\right)\right)$$

$$\Delta COM \approx 20 \log_{10} \left(\frac{1}{A_s} CDF_{noise+mismatch}^{-1} \left(1 - \frac{2}{3} DER_{MLSE} \right) \right) - IP(other \ than \ Truncation \ and \ Mismatch)$$

• Equations also include the effect of sequence truncation

March 2024

IEEE 802.3 Plenary

Test Results – α Mismatch

• α mismatch of more than 2% causes noticeable drop of Δ COM for majority of cases

Quantization Noise

• Since ADC almost always precedes RxFFE, its quantization noise affects both RxFFE and MLSE

Quantization (or Equivalent) Noise

- This makes study of the quantization noise dependent on RxFFE and its optimization
- In the absence of quantization noise, the optimizer tends to favor RxFFE over CTLE
- As a result of CTLE under-utilization, its output could be severely under-equalized
- This forces a large input dynamic range, hence increased number of required bits, on the ADC
- The bottom line is that the quantization noise is impactful, changes the optimization results, and must be considered for the combination of RxFFE and MLSE
- In the absence of ADC or when it is after RxFFE, considering an 'equivalent' noise between CTLE and FFE is still reasonable and helpful
- As for the MLSE IP, once quantization noise is added to COM, U1.c takes it into consideration March 2024 IEEE 802.3 Plenary 12

Test Results – Effect of Quantization Noise (Not Including MLSE)

- Finer quantization (larger ENOB) pushes more equalization to RxFFE and less to CTLE
- CTLE utilization on average reduces from ~18dB to ~5dB as ENOB increases from 4 to 12 bits

Test Results – Effect of Quantization Noise (Not Including MLSE)

- CTLE marginalization increases p2p and sigma of the (under-equalized) signal at its output (ADC input)
- To mimic this in practice, ADCs with large dynamic range and ENOB are required (beyond what is readily available in today's technologies
- Clip level is calculated from the signal PDF for a clipping frequency equal to error rate March 2024 IEEE 802.3 Plenary

Test Results – Effect of Quantization Noise (Not Including MLSE)

- A considerable drop in COM is expected unless much better ADCs become available
- For example, for ENOB of 5 to 6 average COM drops by 1.57dB to 0.77dB
- Even if ENOB improves by 1-2 bits, there is still a COM penalty that cannot be ignored

March 2024

IEEE 802.3 Plenary

Test Results – Effect of Quantization Noise (Including MLSE)

- If COM (not including MLSE) is negative, MLSE Δ COM is ignored and set to zero for calculating COM (including MLSE)
- For ENOBs of 6 and larger, average COM penalty is almost entirely due to the overall effect of quantization noise and not because of MLSE
- For ENOBs less than 6, although MLSE penalty increases, but the overall penalty is still mostly due to the overall effect of quantization noise
- For the reason of reduced MLSE \triangle COM at larger ENOB for some channels see backup slides March 2024 IEEE 802.3 Plenary 16

Summary

- MLSE implementation penalty (IP) in equation U1.c is TBD
- An analysis approach was presented to estimate common implementation penalties of MLSE
 - CDR concern
 - ✤ Sequence length truncation
 - * α mismatch
 - Quantization (or equivalent) noise
- These penalties are considered common denominator of different implementation techniques
- Effect of quantization (or equivalent) noise goes beyond MLSE and extends to FFE and optimization results
- Naturally, the implementation penalties are case dependent and could vary considerably
- A set of 112 channels used for generating test data
- Data shows how the analysis can estimate the penalties on a case basis

Backup Slides

Test Channels

• The same set of 112 channels used in shakiba_3dj_01b_2401.pdf

Channel #	Channel Source
1	https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_03_230629.zip
2	https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_04_230629.zip
3 – 7	https://www.ieee802.org/3/dj/public/tools/CR/kocsis_3dj_02_2305.zip
8 – 34	https://www.ieee802.org/3/dj/public/tools/KR/mellitz_3dj_02_elec_230504.zip
35 – 40	https://www.ieee802.org/3/dj/public/tools/CR/shanbhag_3dj_01_2305.zip
40 - 44	https://www.ieee802.org/3/dj/public/tools/KR/shanbhag_3dj_02_2305.zip
45 – 80	https://www.ieee802.org/3/dj/public/tools/KR/weaver_3dj_02_2305.zip
80 - 88	https://www.ieee802.org/3/dj/public/tools/KR/weaver_3dj_elec_01_230622.zip
89	https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_07_2309.zip
90 – 96	https://www.ieee802.org/3/dj/public/tools/KR/akinwale_3dj_01_2310.zip
97 – 100	https://www.ieee802.org/3/dj/public/tools/CR/akinwale_3dj_02_2311.zip
101 – 112	https://www.ieee802.org/3/dj/public/tools/CR/weaver_3dj_02_2311.zip

Test Channels

March 2024

IEEE 802.3 Plenary

COM Spreadsheet

Table 93A-1 parameters				I/O control			Table 93A-3 parameters				SAVE_CONFIG2MAT	0	
Parameter	Setting	Units	Information	DIAGNOSTICS	0	logical	Parameter	Setting	Units	Information	The second second second	Receiver testing	
f.b	106.25	GBd		DISPLAY_WINDOW	0	logical	package ti gamma0 a1 a2	e-4 0.00065 0.000	[3]		RX_CALIBRATION	0	logical
f_min	0.05	GHz	-	C5V_REPORT	0	logical	piackage ti tau	0.006141	ns/mm		Sigma BBN step 💻	5.00E-03	V
Delta_f	0.01	GHz		RESULT_DIR	\results\CACR_set1_{date}		package Z c	1,70 70,80 80,10	Ohm			ICN parameters	
Ć,d	[0 4e4 0 9e4 1.1e4;0 4e4 0.9e4 1.1e4]	nF	[TX RX]	SAVE_FIGURES	0	logical	z_p(TX)	1 11, 11 11;0	mm	[test cases to run]	£v	0.278	Eb
L5	[0.130.150.14, 0.130.150.14]	nH	[TX RX]	Port Order	[1324]		z_p (NEXT)	1 11 11 11 10	ារាជ	[test cases]	11	0.276	Fb
C_6	[0.3e-4 0,3e-4]	nF	(TX RX)	RUNTAG	KR_set1_eval_		z_p (FEXT)	1 11, 11 11;0	тл	[test cases]	£n.	0.278	Fb
RO	5.00E+01	Ohm		COM CONTRIBUTION	1	logical	z_p (RX)	1 11:1111.0	mm	[test cases]	f_2	61.625	GHz
R_d	[5050]	Ohm	[TX RX]		the second s	100 million	Cp	[0.4e-4 0.4e-4]	ŋĘ	[test cases]	Aft	0.450	V
PKG NAME	PKG_HIR_CLASSB_PKG_HIR_CLASSB		TX RX	π	R and ERL options	and ERL options		Operational			Ant	0.450	V
A_V	0.413	A.		TDR	1	logical	ERL Pass threshold	10	dB				
Afe	0.413	V.		ERL	1	logical	COM Pass threshold	3	db		Parameter	Setting	
Alne	0.608	V	1.	ERL_ONLY	0	ns.	DER 0	1.00E-04			board ti cemma0 a1 a2	[0 6.44084e-4 3.6036e-0	5] 1.4 db/in @ 53.1250
2_p select	[3]		1 1	TR TDR	0.01		U	0.00400	t) S		board ti tau	5.790E-03	ns/mm
L I	2			N	4000	logical	FORCE_TR	1	logical		board Z c	100	Ohm
M	32		· · · · · · · · · · · · · · · · · · ·	TDR Butterworth	1	A	PMD_type	C2C			z_bp(TX)	32	mm
filter and Eq.				beta_x	0		EW	1			z_bp (NEXT)	32	mm
tr 📕	0.58	+fb		rho_x.	0.618		MLSE	0	logical		z bp (FEXT)	32	mm
E(0)	0.55	·	mîn	TDR W TXPKG	0	ហ	ts_anchor	1	the second se		z_bp (RX)	32	mm
c(-1)	0		[min:step:max]	N_bx	20		sample_adjustment	[-88]			C0	[0.2e-40]	'nΕ
c(-2)	0		[min:step:max]	fixture delay time	[00]		Local Search	2			0	[0.2e-40]	nF
c(-3)	0		[min:step:max]	Tukey_Window	1	· · · · · · · · · · · · · · · · · · ·	Filter: Rx FFE		Jer: Rx FFE		Include PCB	0	logical
c(4)	0	-	[min:step:max]	No	Noise, jitter UI		ffe pre tap len	6	U.		Seletions(rectangle, gaussian, dual_r		ghtriangle
c(1)	0	·	[min:step:max]	sigma_RJ	0.01	UI	ffe_post_tap_len	24	<u>u</u>		Histogram_Window_Weight	gaussian	selection
Nb	1	UI		A DD	0.02	V^2/GHz	ffe pre tap1_max	1	N	1 C	Qr	0.02	U.
b_max(1)	0.75	1	As/dffe1	eta_0	4.00E-09	dB	ffe_post_tap1_max	1				1	1
b_max(2_N_b)	0.3	1	As/dfe2_N_b	SNR_TX	33		ffe tapn max	1		10000000000000			
b_min(1)	Ŭ.	1	As/dffe1	R_LM	0.95	· · · · · ·	FFE_OPT_METHOD	MM5E	N	FV-LMS or MMSE			
b_min(2_N_b)	-0.15	5	As/dfe2. N_b				num ui RXFF noise	512	5.2	C MORENARIA -			
g_DC	[-20:1:0]	dB	[min:step:max]	BREAD_CRUMBS	i	logical	Floating Tap Control						
f2	25.16	GHz					N lbg 0 012 or 3 groups						
f_p1	40.00	GHz		PALE		العنعان	N_bf	4	taps per group				
f_p2	56.00	GHz	-				Nf	80	UI span for floating taps				
g_DC_HP	(-6:1:0)		[min:step:max]				bmatg	0.2	max DFE value for floating taps				
f HP PZ	1 328125	GHz	1 1 1 1 1 1 1				B float RSS MAX	0.1	rss tail tap limit				
Butterworth	1	logical	include in fr				N_tail_start	25	(UI) start of tail taps limit				

COM Spreadsheet

.START	PKG_LowR_CLASSA	[2.44 5.7] db		START	PKG_Module			
	Table 93A-3 parameters		Table 93A-3 parameters					
Parameter	Setting	Units	Information	Parameter	Setting	Units	Information	
package_tl_gamma0_a1_a2	[0.0005 0.00089 0.0002]			package_tl_gamma0_a1_a2	[0.0005 0.00089 0.0002]			
package_tl_tau	0.006141	ns/mm		package_tl_tau	0.006141	ns/mm		
package_Z_c	[87.5 87.5 ; 95 95 ; 100 100; 100 100]	Ohm		package_Z_c	[87.587.5;9595, 100 100; 100 100]	Ohm		
R_d	[50 50]	Ohm	[TX RX]	R_d	[50 50]	Ohm	[TX RX]	
z_p (TX)	[12 33 33 33 ; 1.8 1.8 1.8 1.8 ; 0000 ; 0000]	mm	[test cases]	z_p (TX)	[0000; 0000; 0000; 8888]	mm	[test cases]	
z_p (NEXT)	[12 33 33 33 ; 1.8 1.8 1.8 1.8 ; 0000 ; 0000]	mm	[test cases]	z_p (NEXT)	[8888 , 0000 , 0000 , 0000]	mm	[test cases]	
z_p (FEXT)	[12 33 33 33 ; 1.8 1.8 1.8 1.8 ; 0000 ; 0000]	mm	[test cases]	z_p (FEXT)	[8888 : 0000 : 0000 : 0000]	mm	[test cases]	
z_p (RX)	[12 33 33 33 ; 1.8 1.8 1.8 1.8 ; 0000 ; 0000]	mm	[test cases]	z_p (RX)	[8888 ; 0000 ; 0000 ; 0000]	mm	[test cases]	
C_p	[0.4e-4 0.4e-4]	nF	[TX RX]	C_p	[0.4e-4 0.4e-4]	nF	[TX RX]	
A_v	[0.4057 0.4143 0.4143 0.4143]	V	Vf=0.400	A_v	[0.4057 0.4057 0.4057 0.4057]	V	Vf=0.400	
A_fe	[0.4057 0.4143 0.4143 0.4143]	V	Vf=0.399	A fe	[0.4057 0.4057 0.4057 0.4057]	V	Vf=0.399	
A_ne	[0.600 0.600 0.600]	V	Vf=0.400	Ane	[0.600 0.600 0.600 0.600]	V	Vf=0.400	
.END				END				
						1	-	
.START	PKG_HiR_CLASSB	[2.8 5.6 6.7 9.4] db		START	PKG_Null			
	Table 93A-3 parameters			1	the second second	No. of Street,		
Parameter	Setting	Units	Information	Parameter	Setting	Units	Information	
package_tl_gamma0_a1_a2	[0.0005 0.00065 0.000293]			package_tl_gamma0_a1_a2	[5e-4 0.001 0.03]			
package_tl_tau	0.006141	ns/mm		package_tl_tau	0.006141	ns/mm		
package_Z_c	[87.5 87.5 ; 95 95 ; 100 100; 78 78]	Ohm		package_Z_c	[92 92 ; 70 70; 80 80; 100 100]	Ohm	1	
R_d	[50 50]	Ohm	[TX RX]	R_d	[50 50]	Ohm	[TX RX]	
z_p (TX)	[8 24 30 45; 2 2 2 2; 1.3 1.3 1.3 1.3; 1.5 1.5 1.5 1.5]	mm	[test cases]	z_p (TX)	[0000;0000;0000;0000]	mm	[test cases]	
z_p (NEXT)	[8 24 30 45; 2 2 2 2; 1.3 1.3 1.3 1.3; 1.5 1.5 1.5 1.5]	mm	[test cases]	z_p (NEXT)	[0000;0000;0000,0000]	mm	[test cases]	
z_p (FEXT)	[8 24 30 45; 2 2 2 2; 1.3 1.3 1.3 1.3; 1.5 1.5 1.5 1.5]	mm	[test cases]	z_p (FEXT)	[0000;0000;0000;0000]	mm	[test cases]	
z_p (RX)	[8 24 30 45; 2 2 2 2; 1.3 1.3 1.3 1.3; 1.5 1.5 1.5 1.5]	mm	[test cases]	z_p (RX)	[0000;0000;0000;0000]	mm	[test cases]	
C_p	[0.4e-4 0.4e-4]	nF	[TX RX]	C_p	[00]	nF	[TX RX]	
A_v	[0.4049 0.4114 0.4132 0.4173]	V	Vf=0.400	A_v	0.5	V	Vf=0.400	
A_fe	[0.4049 0.4114 0.4132 0.4173]	V	Vf=0.399	A fe	0,5	v	Vf=0.400	
A_ne	[0.600 0.600 0.600 0.600]	V	Vf=0.400	A_ne	0.61	V		
.END				END				

Sequence Truncation

- Reduces both sequence processing and trace-back to the truncated length
- Equation U1.c executes to the truncated sequence length (*sl*) terms
- All the error events of smaller than *sl* will be processed fully and:
 - ✤ U1.c directly applies
- The last error event of length *sl* will be processed partially and:
 - * The MLSE sequence noise now has sl terms (instead of sl + 1)
 - * The PDF convolution expression iterates sl 1 times (lacks the last term due to truncation)
 - * Particularly, lack of the last convolution term $(*(1/\alpha)PDF_{noise}(x/\alpha))$ reflects lack of convergence of the error event due to truncation
 - * For the last term in U1.c, the correlation matrix $\rho_{noise, jEE}((sl + 1) \times (sl + 1))$ is truncated to the $\rho_{noise, jEE}(sl \times sl)$ sub-matrix

March 2024

IEEE 802.3 Plenary

24

α Mismatch

• An error event occurs if:

 $\sum_{i=1}^{j+1} B_{i,E} < \sum_{i=1}^{j+1} B_{i,C}$

$$\left(n_{1} + (1 - \alpha')\sum_{i=2}^{j} n_{i} + \alpha' n_{j+1}\right) + \Delta \alpha \left(L_{0} + (1 - \alpha')\sum_{i=2}^{j} L_{i-1} + \alpha' L_{j}\right) > \frac{1}{L - 1} \left(1 + (j - 1)(1 - \alpha')^{2} + {\alpha'}^{2}\right) - \frac{2\Delta \alpha}{L - 1} \left(\left\lfloor\frac{j - 1}{2}\right\rfloor (1 - \alpha') - \alpha' \operatorname{mod}(j + 1, 2)\right)$$

- Two new terms in red are due to α mismatch (zero if there is no mismatch)
- The LHS red term is random (depends on PAM levels throughout the error event)
- The RHS red term is constant for each error event and negligible
- After rewriting, a new mismatch noise term $(\Delta \alpha L_i, i = 0 \text{ to } j)$ is added to each previous noise sample $(n_i, i = 1 \text{ to } j + 1)$

$$(n_1 + \Delta \alpha L_0) + (1 - \alpha') \sum_{i=2}^{j} (n_i + \Delta \alpha L_{i-1}) + \alpha' (n_{j+1} + \Delta \alpha L_j) > \frac{1}{L-1} (1 + (j-1)(1 - \alpha')^2 + {\alpha'}^2)$$

α Mismatch

• New combined PDF for the total noise:

 $PDF_{noise+mismatch} = PDF_{noise} * PDF_{\Delta \alpha L}$

- *PDF*_{noise} is the PDF of the previous noise (calculated by COM)
- PDF of the new mismatch noise ($PDF_{\Delta\alpha L}$) depends on PAM levels (A_s) and mismatch ($\Delta\alpha$)

- In executing U1.c the following changes should be applied:
 - 1) Replace α with α'
 - 2) Replace PDF_{noise} with $PDF_{noise+mismatch}$
 - 3) Replace $CDF_{noise, jEE}$ with $CDF_{noise+mismatch, jEE}$ (which would result from 1)

Combination of Penalties

- Pre-screening will bypass MLSE for the cases with a pre-MLSE signal quality concern for proper CDR operation
- \bullet Equation U1.c on slide 10 reflects the combined effects of sequence truncation and α mismatch
- By adding quantization (or equivalent) noise to the COM flow, COM will include it in the optimization process and generates the overall noise, including the quantization (or equivalent) noise, and consequently the proper input to the MLSE calculator to execute U1.c
- Following slides show example test results with multiple sweeps for when more than one penalty is considered at a time

Test Results – Sequence Truncation and α Mismatch at ENOB = 32

March 2024

IEEE 802.3 Plenary

Test Results – α Mismatch and Sequence Truncation at ENOB = 32

March 2024

IEEE 802.3 Plenary

Test Results – Sequence Truncation and α Mismatch at ENOB = 6

March 2024

IEEE 802.3 Plenary

Test Results – α Mismatch and Sequence Truncation at ENOB = 6

March 2024

IEEE 802.3 Plenary

Reduction of ΔCOM at Larger ENOB for some Channels

 \bullet Test data show that for some channels ΔCOM degrades even though quantization noise reduces and pre-MLSE COM improves

March 2024

IEEE 802.3 Plenary

Reduction of ΔCOM at Larger ENOB for some Channels

- Every time ENOB changes optimizer re-optimizes
- Optimizer ignores MLSE and assumes DFE
- \bullet As a result, α can reduce even if quantization noise reduces

- $\bullet \, \alpha$ saturates for most of the high loss channels
- MLSE performance also depends on other case parameters as well
- \bullet A proper optimizer when MLSE exists would consider maximizing α