SNDR Insertion Loss Adjustments

Richard Mellitz, Samtec

May IEEE802.3 interim meeting, Annapolis, MD USA
Supporters

- John Calvin, Keysight
- Pavel Zivny, Tektronix
- Piers Dawe, Nvidia
- Rich Rabinovich, Keysight
Agenda

- Background
- Simulation Proxy Experiment for Measurements
- SNDR results
- Loss Adjustment Factor
- Summary and Proposal
Background

- SNDR is defined in 120D.3.1.55
 - \[\text{SNDR} = 10 \times \log_{10} \left(\frac{p_{\text{max}}^2}{\sigma_e^2 + \sigma_n^2} \right) \]
 - Equalization is not required to make the measurement

- Consider broadband noise is the usage model for \(\sigma_e^2 + \sigma_n^2 \)
 - The old assumption is that SNDR does not change with channel insertion loss because the power ratio of pulse peak, \(A_s(h^{(0)}(t_s)) \), and the noise will not change with loss. Is this assumption valid?
 - COM Annex 93A computations use a broadband noise impairment, \(\sigma_{TX}^2 \) which is included in the broadband receiver noise variance \(\sigma_g^2 \) used to compute COM
 - \[\sigma_{TX}^2 = \left[h^{(0)}(t_s) \right]^2 10^{-\text{SNR}_{TX}/10} \]
 - Note: For many cases, SNR_{TX} is approximately SNDR
Motivation

- Computation for determining noise from a transmitter noise is described in Annex 178A (figure 178A-7)
- This noise is used for the computation of COM in Annex 178A
- As indicated below transmitter noise is injected at the transmitter source

Original Proposed in healey_3dj_01_2401

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
Simple Experiment

SIMULATION AS A PROXY FOR SNDR MEASUREMENTS

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
Simulation Details

Ideal Pulse

\[PR_{Gaussian} = A \left(e^{-\frac{1.6832}{2 \sqrt{\pi}} (UI + \text{delay} - t)} - e^{-\frac{1.6832}{2 \sqrt{\pi} \text{delay}} (delay - t)} \right) \]

- **S4P**
- **Channel IL**
- **Filters**

Broad band Gaussian Noise

Sample rate = \(\frac{UI}{32} \)

rms = 8 mV

Pmax = 0.1301 V

SNDR (est) = 20 \log_{10} \left(\frac{P_{max}}{\sigma_r} \right) = 30.184 dB

- **FIR**
- **PR channel**

Rx Noise

rms = 4.0276 mV

\[\sigma_r^2 + \sigma_n^2 \]

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
Channel list and IL Plots
5.5 dB to 27.9 dB

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
Loss reduces SNDR

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
SNDR Referred back to transmit source

SNDR CAN BE CORRECTED

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
Equations 178A–18 and 178A-31 computes the transmitter noise power variance seen at the receiver

\[S_{tn}(\theta) = \sigma_X^2 10^{-\frac{\text{SNR}_{TX}}{10}} |\text{DFT}(h_{tn}(n))|^2 / f_b \]

- This is power spectral density from the transmitter noise

\[\sigma_G^2 = f_b \int_{-\pi}^{\pi} [S_{tn}(\theta) + ...] d\theta \]

- \(\sigma_G^2 \) is a noise variance used to compute COM as in 93A but computed differently

\[f_b \int_{-\pi}^{\pi} [S_{tn}(\theta)] d\theta \] is the transmitter noise power variance computed in the frequency domain
Use power of the time domain fitted sampled pulse response

- Use the sampled pulse

\[p(n) = [p(t_p + M(-D_p)) p(t_p - M(1 - D_p)) p(t_p - M(2 - D_p)) p(t_p + M(N_p - D_p - 1))] \]

- \(t_p \) is the index of the linear fit pulse where \(p(t_p) \) equals maximum \(p \)
- \(M \) is the oversampling
- This is similar to \(\text{SNR}_{\text{ISI}} \) in Annex 120D

- For the “S” in SNDR use the power variance of the signal at the measurement point as follows which is the in time and frequency domain

\[\sigma_p^2 = \sum_{1}^{M(N_p-D_p-1)} p(n)^2 \]

- Instead of \(p_{\text{max}} \)

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force
Adjust SNDR for loss

Consider SNDR as a ratio of signal power variance to noise power variance

• Perhaps: SNDR should be $10 \times \log_{10}\left(\frac{\sigma_p^2}{\sigma_e^2 + \sigma_n^2}\right)$

So we don’t change prior standards, adjust SNDR with LCF

• $SNDR = 10 \times \log_{10}\left(\frac{p_{max}^2}{\sigma_e^2 + \sigma_n^2}\right) + LCF$

• $LCF = 10 \times \log_{10}\left(\frac{\sigma_p^2}{p_{max}^2}\right)$

• This was the basis for the previous graphs of SNDR and the corrected SNDR
Summary

- SNDR was shown to reduce with channel insertion loss
- SNDR remains constant with loss if adjusted with σ_P^2
 - Assuming the transmitter noise is broadband
- Proposal: Change SNDR specifications to adjust measurement at TP0V and TP2 with LCF
 - As defined in the previous slide
 - This aligns SNDR to measurements to usage model in equation 178A-18
Thank You!