Revisiting MPI Penalty for Optical PMDs

Ali Ghiasi - Ghiasi Quantum/Marvell

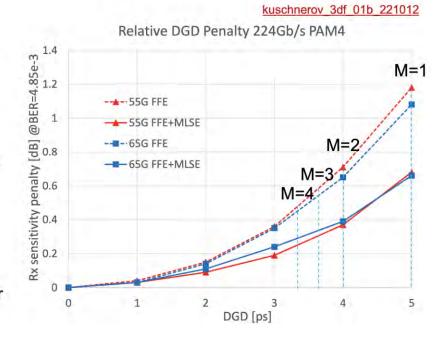
New Orleans

May 10, 2025

Supporters

- ☐ John Johnson Broadcom
- ☐ Gary Nicoll Cisco
- **□** Vipul Bhatt Coherent
- ☐ Chris Cole Coherent
- ☐ Haifeng Liu HG Genuine
- Mike Dudek Marvell
- **☐** Mark Kimber Semtech.

Overview

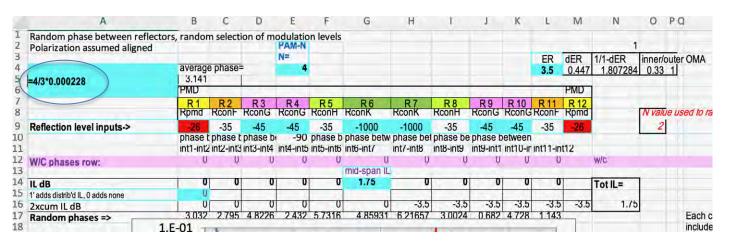

- Background on DGD penalty
- Background on MPI penalties
- Correcting MPI spreadsheet for PAM4
- Revisiting cable plants
- Underlaying MPI assumptions
- **☐** Few MPI analysis
- Summary.

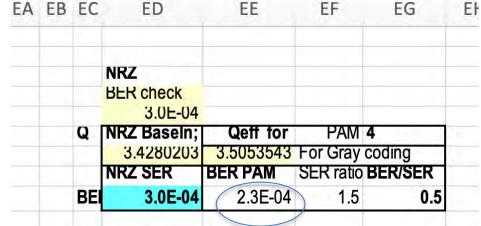
DGD Penalty for Clauses 180-183

- kuschnerov 3dj optx 01 230829 show worst case DGD penalty of 0.7 dB for clause 183 800GBASE-LR4 PMD for max DGD of 4 ps
 - 800GBASE-FR4 with max DGD of 2.3 ps has ~0.18 dB penalty
 - 800GBASE-FR4/DRx-2 with max DGD of
 2.3 ps has ~0.18 dB penalty
 - 800GBASE-FR4-500/DRx with max DGD of 2.24 ps has ~0.18 dB penalty
- ☐ For PMDs listing combined DGD/MPI penalty the MPI value should be added to the above values of DGDs.

DGD penalty for varying number of segments M

- The original single segment (M=1)
 PMD penalty was based on a
 FFE+MLSE receiver (0.7dB)
- Assuming multiple segments, a linear equalizer would be sufficient to achieve acceptable performance
- Given the available data and pending further discussion by the industry M=4 seems to be a reasonable assumption
- M=4 can achieve a penalty of ≤0.5dB with an linear FFE equalizer

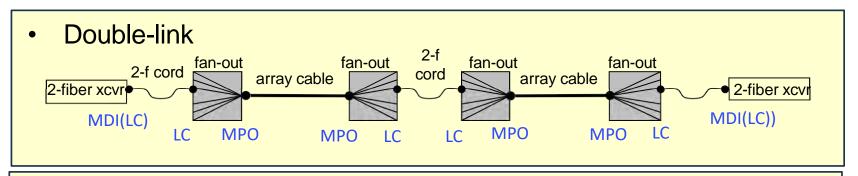

Revisiting the MPI/DGD Penalties

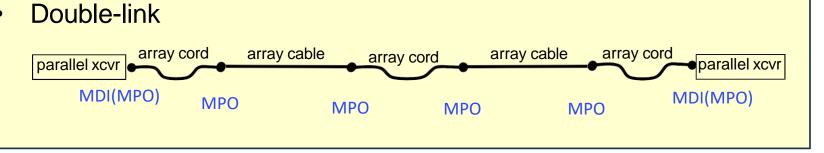

- ☐ MPI penalty based on statistical model proposed by King 01a 01116 smf developed in 802.3bs has been adopted for MPI penalty estimation
 - 802.3bs MPI analysis was based on assumption in <u>liu 3bs 01a 0316</u>
 - 802.3cd MPI analysis and how to reconcile PC and APC connectors penalties was based on traverso 3cd 01 0317
- ☐ ghiasi_3dj_02_2501 raised concern regarding fixed allocation of MPI penalties
 - 180.7.3 has allocation of 0.1 dB MPI/DGD penalty to support DR double links with 6 discrete reflectance at @-45 dB discrete reflectance channel IL=3 dB
 - 181.7.3 has allocation of 0.5 dB MPI/DGD penalty to support 800GBASE-FR4-500 double link with 4 discrete reflectance @-35 and 4 discrete reflectance @-45 dB channel IL=3.5 dB
 - 182.7.3 has allocation of 0.4 dB MPI/DGD penalty to support DR-2 double links with 4 discrete reflectance at @-35 dB and 4 discrete reflectance @-45 dB channel IL=4 dB
 - 183.7.3 has allocation of 0.4 dB MPI/DGD penalty to support 800GBASE-FR4 double-link with 4 MPO @-45 dB and 4 LC@-35 dB discrete reflectance and channel ILmax=4 dB
- iohnson 3dj adhoc 01 250220 additional background on the history of MPI penalty and there may be good reason to revisit some of the underlaying assumptions
- Reconciling PC and APC MPI penalties is top priority for 802.3dj
 - Its also time to revisit underlaying MPI assumptions which applies to all clauses.

5

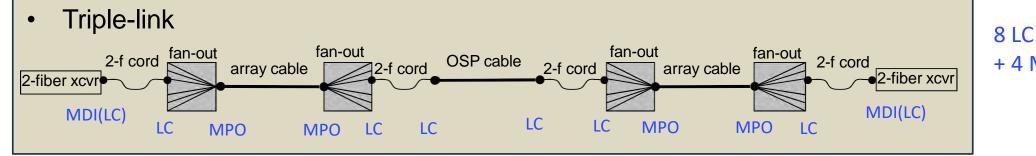
Correcting Input BER for PAM4 in King Spreadsheet

- □ The intention of J. King likely was to input NRZ BER into cell A5 but we have been inputting PAM4 BER into cell A5
 - Cell E4 based on on PAMx converts the cell A5 NRZ BER into PAMx BER in cell EE(
 - To use J. King spreadsheet for PAM4 convert the PAM4 BER to NRZ BER by x4/3, see below.




Cable Plants

- □ Cable plant model per kolesar_3bs_01_0514 double and triple link and nicholl_3bs_01a_0316 for MPI calculations
 - Are these acceptable cable plant assumptions for 802.3dj optical PMDs?


200GBASE-DR 200GBASE-DR-2 800GBASF-FR4-500 800GBASE-FR4

400GBASE-DR2 400GBASE-DR2-2 800GBASE-DR4 800GBASE-DR2-4 1.6TGBASE-DR8 1.6TGBASE-DR8-2

800GBASE-LR4

+ 4 MPO

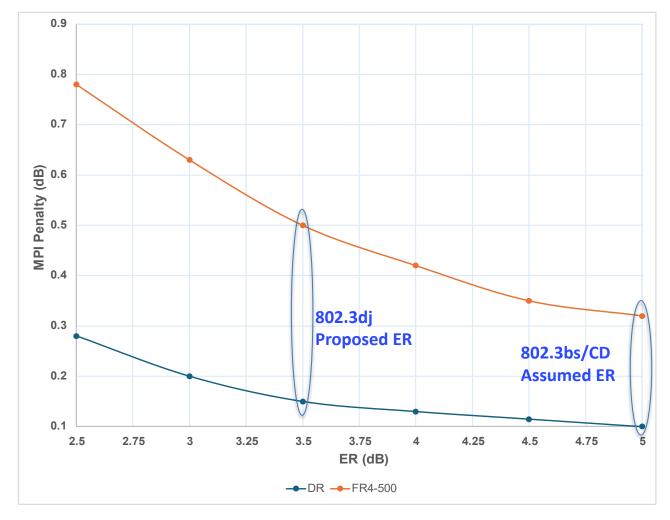
6 LC

6 MPO

+ 4 MPOs

Underlaying MPI Penalty Assumptions

☐ Underlaying assumptions in the 802.3bs/cd


- Cable plant follow double or triple link model
- Max loss at the end of cable plant
- BER inadvertently end up to be 4/3*2.4E-4
- LC reflectance -35 dB
- MPO reflectance -45 dB
- ER=5 dB
- BER 2E-4
- MPI penalty extrapolated to 1E-6

Proposed assumptions for 802.3dj

- Cable plant follow double or triple link model
- Placing 1/2 of the loss in middle of cable
- LC reflectance -35 dB
- MPO reflectance -45 dB
- ER=3.5 dB (min allowed) to better support 200G SiP
- BER 2.28E-4 for CL180 and 182, BER 4.8E-3 for CL182 and 183
- MPI penalty extrapolation for now keep at 1E-6 but when cross-penalty due to TDECQ eye-clousure is included then penalty extrapolation can be redcued to 1E-5 based on improved SMF channel model as in rodes 3dj 01a 2401.

MPI Penalty as Function of ER

- ☐ CL 180 DR and CL 181 FR4-500 MPI penalty as function of ER for double llink configurations as on page 7
 - MPI penalties for extinction ratio from 5.0 dB to 2.5 dB based on the input that 200G SiP MZM typically operate closer to 3.5 dB
 - Original analysis in 802.3bs
 <u>liu 3bs 01a 0316</u> assumed ER
 of 5 dB with the full channel IL
 at TP3 input
 - This analysis assumes ½ of loss placed at mid-span
 - Slight MPI penalty increase due to lower channel loss is offsetted by correcting PAM4 BER in King Spreadsheet.

Best Method to Reconcile MPI Penalty for Mixed MPO/LC PMDs

- □ <u>traverso 3cd 01 0317</u> proposed method can reconcile MPI penalty in mixed mode PMDs such as for 200GBASE-DR and 00GBASE-DR-2
 - Row 0 with 0 >-45 dB and ≤-35 dB reflectance is the MPI for double link MPO cable plant
 - Row 0 with 0 >-45 dB and ≤-35 dB reflectance is used for MPI allocation of double link LC cable plant but cable plant loss are reduced with additional number of discrete reflectance's (LC) >-45 and ≤-35 dB
- Extending clause 180 DR MPI-loss trade off can be applied to DR-2, FR4-500, FR4, and LR4 as suggested Johnson 3dj 01 2505.

MPI Penalty Calculation Table from Traverso

MPI Penalty (dB)		Number of discrete reflectances > -55 dB and ≤ -45 dB									
		0	1	2	3	4	5	6	7	8	
Number of discrete reflectances > -45 dB and ≤ -35 dB	0	0	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.10	
	1	0.05	0.06	0.05	0.09	0.11	0.12	0.11	0.15	0.12	
	2	0.1	0.12	0.13	0.16	0.19	0.2	0.22	0.23	0.22	
	3	0.18	0.18	0.2	0.2	0.24	0.3	0.3	0.32	*	
	4	0.26	0.27	0.32	0.34	0.36	0.4	0.41	*	*	
	5	0.32	0.33	0.38	0.4	0.44	0.48	*	*	*	
	6	0.45	0.48	0.51	0.54	0.57	*	*	*	*	

x.yz = these values exceed the proposed MPI penalty limit – see slide 3

Table 180-12—Maximum channel insertion loss versus number of discrete reflectances

Maximum channel insertion loss (dB)		Number of discrete reflectances > −55 dB and ≤ −45 dB								
		0	1	2	3	4	5	6	7	8
Number of discrete reflectances > −45 dB and ≤ −35 dB	0	3	3	3	3	3	3	3	3	3
	1	3	3	3	3	3	3	3	3	3
	2	3	3	3	2.9	2.9	2.9	2.9	2.9	2.9
	3	2.9	2.9	2.9	2.9	2.9	2.8	2.8	2.8	a
	4	2.8	2.8	2.8	2.8	2.7	2.7	2.7	a	a
	5	2.8	2.8	2.7	2.7	2.7	2.6	a	a	a
	6	2.6	2.6	a	a	a	a	a	a	a

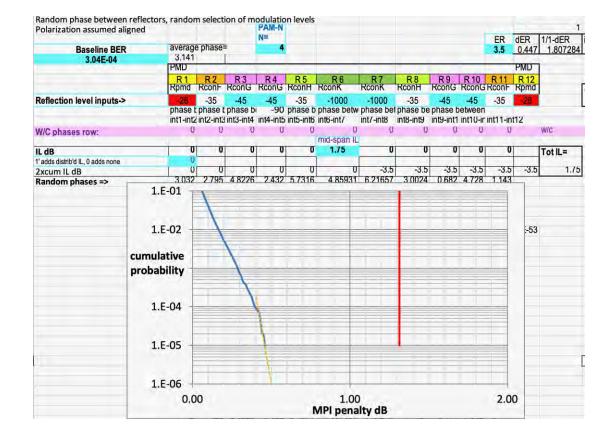

^a The indicated combination of reflectances does not provide a supported maximum channel insertion loss.

Clause 180 DR Link MPI Penalty

Double link with 6 MPO connectors

MPI penalty is ~0.15 dB at confidence 1E-6 after correcting for PAM4 BER and placing half the

loss in the middle of the link.

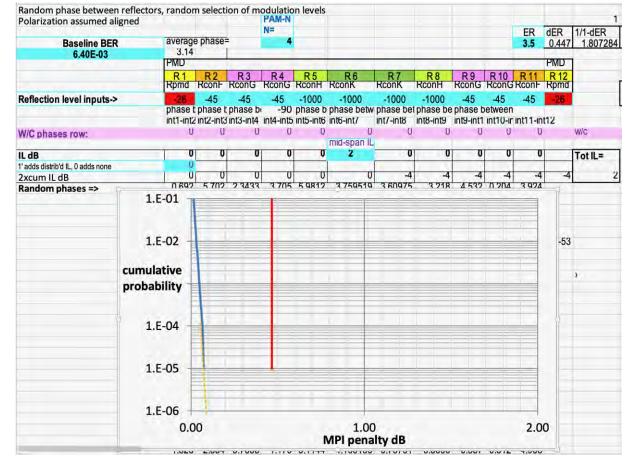


Clause 181 FR4-500 Link MPI Penalty

Double link with 4 LC and 4 MPO

MPI penalty is ~0.5 dB at confidence 1E-6 after correcting for PAM4 BER and placing half the loss in the

middle of the link.

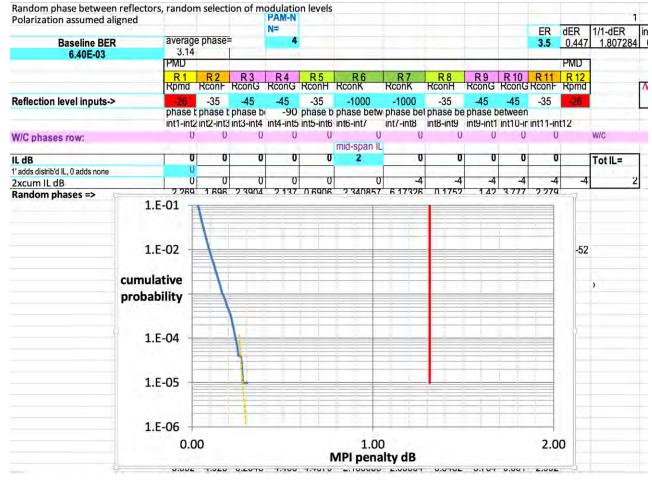


Clause 182 DR-2 MPI Penalty

Double link with 4 LC and 4 MPO

MPI penalty is ~0.09 dB at confidence 1E-6 after correcting for PAM4 BER and placing half the

loss in the middle of the link.



Clause 183 FR4 MPI Penalty

☐ For Double link 4 LC and 4 MPO connectors

- MPI penalty is ~0.3 dB at confidence 1E-6 after correcting for PAM4 BER and placing half the loss in the

middle of the link.

Summary of MPI/DGD Penalties

■ MPI/DGD penalty must be sufficient to support expected double or triple link configuration.

ropsoed D Penalty
NC

^{*} These PMDs have combined MPI/DGD penalties

Summary

- ☐ The MPI/DGD penalties must be sufficient to support the underlying double or tipple link configurations
 - Current combined MPI+DGD penalties of 0.1 dB for CL180 PMDs is insufficient to support double link with 6 MPOs
 - Current combined MPI+DGD penalties of 0.1 dB for CL181 PMDs is insufficient to support double link with 4 MPOs and 4 LCs
 - Current combined MPI+DGD penalties of 0.4 dB for CL182 PMDs is 0.13 dB excess allocation to support double link with 6 MPOs
 - Current combined MPI+DGD penalties of 0.5 dB for CL183 800GBASE-FR4 PMDs is about the right allocation to support double link with 4 MPOs and 4 LCs
 - Current combined MPI+DGD penalties of 0.4/0.7 dB for CL183 800GBASE-LR4 PMDs is about the right allocation to support triple configuration with 6 LC and 4 MPOs
- □ Trading off MPI penalty vs channel IL as in Table 180-12 allow supporting greater set of channel configuration but the MPI/DGD penalty must be sufficient to support the basic link configuration
- Current MPI penalty doesn't account cross-penalty where low transition (low ISI) reflected pulse interfere with high transition (high ISI TDECQ ~ 3 dB)
 - In worst case the MPI penalty may double such even frequency would be low and data dependent
 - This needs more study as doubling MPI penalty would be excessive and costly!

Thank You!