Optical Tx Specification Proposal Functional Receiver & FEC Code Word Mask

IEEE P802.3dj Task Force
Plenary Meeting
July 28, 2025
Chris Cole, et al.

Author Team

- Fabio Bottoni, Cisco
- Matt Brown, Alphawave
- Chris Cole, Coherent
- Mike Dudek, Marvell
- Ali Ghiasi, Ghiasi Quantum
- Michael He, Terahop
- John Johnson, Broadcom
- Dirk Lutz, Eoptolink
- Marco Mazzini, Cisco

- Guangcan Mi, Huawei
- Karl Muth, Broadcom
- Vasudevan Parthasarathy, Broadcom
- Roberto Rodes, Coherent
- Fred Tang, Broadcom
- Pengyue Wen, Meta
- Rang-Chen Yu, Terahop
- Xiang Zhou, Google

Supporters

• Bill Simms, NVIDIA

Outline

- Introduction
- Functional Receiver (FRx) Test Definition
- FRx Test FEC Code Word Limits
- TECQ & TDECQ Alternatives

Introduction

- 100G/lane optics with compliant TDECQ have interoperability issues in deployment
- 200G/lane optics have poor if any TDECQ correlation to link performance
- Optimizing for link performance often increases TDECQ
- Some optimum link settings result in TDECQ exceeding compliance limits
- An analogy is a chef serving dishes without tasting them
- End users use HW Rx and FEC code word masks to qualify 200G/lane optical Tx
- Optical module vendors must test with multiple HW Rx and FEC code word masks
- This proposal standardizes HW Rx and FEC code masks for more uniform Tx testing
- A post-deadline presentation is planned with specific comment resolution proposals
- All cooking shows have the same mantra: taste, taste, taste.

Functional Receiver (FRx) Test Definition

- 1. FRx is a hardware (HW) receiver which meets 802.3dj receiver specs FRx meets receiver characteristics in Table 180-8, 181-6, 182-8, or 183-7
- 2. FRx_OMA is the FRx input operating point (dB):

• FRx_correction is for FRx RxS deviation from RxS OMA (max) at TX DUT TECQ, specified in Figure 180-4, 181-4, 182-4, or 183-4

```
FRx_correction = FRx_RxS - RxS_OMA_max_spec (at Tx DUT TECQ)
```

- FRx_margin moves FRx OMA input closer to typical operating point
 FRx_margin = 1 dB
- 3. DUT TX is compliant if the FRx FEC Code Word limits on the following page are met

FRx Test FEC Code Word Limits / 800GbE* / BER = 2.40E-05

S00	S01	S02	S 03	S04	S 05	S 06	S07	S08
1.37E+08	1.79E+07	1.17E+06	5.08E+04	1.64E+03	4.26E+01	9.18E-01	1.69E-02	2.73E-04
	S 09	S10	S11	S12	S13	S14	S15	S16
	3.90E-06	5.01E-08	5.84E-10	6.22E-12	6.12E-14	5.57E-16	4.72E-18	3.75E-20

^{*200}GbE lane code word count limits are $\frac{1}{4}$ of the above values.

- Proposed by Xiang Zhou, Shuang Yin, Google, Roberto Rodes, Coherent
 Count limits are the average number of FEC codewords/sec, observed with a
 specific symbol error count, i.e. non-normalized FEC symbol error distribution.
- Qualitatively similar to mask proposed by Pengyue Wen, Meta, and another end user.

TECQ & TDECQ Alternatives

- 1. Keep TECQ & TDECQ as normative compliance limits, with changes as proposed in other presentations
- 2. Modify TECQ & TECQ normative compliance limits, using margin to FEC code word count limits (Tx_{margin})

```
TECQ_{compliance} = TECQ_{measured} - max(Tx_{margin}, 1dB)

TDECQ_{compliance} = TDECQ_{measured} - max(Tx_{margin}, 1dB)
```

3. Remove TECQ & TDECQ as normative compliance limits

Above alternatives under discussion

Optical Tx Specification Proposal Functional Receiver and FEC Code Word Mask

Thank you