Benefit of Adding DFE to TDECQ

(Comments 381, 382, 383, 384)

Ali Ghiasi - Ghiasi Quantum/Marvell

IEEE 802.3dj Plenary Meeting Madrid Spain

July 28, 2025

Supporter

- Marco Mazzini Cisco
- Roberto Rodes Coherent
- Chris Cole Coherent
- Ahmad El-Chayeb Keysight Technologies
- Mike Dudek Marvell

Special thanks and credit to Ahmad El-Chayeb of Keysight Technologies for TDECQ with DFE analysis support!

Overview

- Background
- **■** TECQ correlation with receiver sensitivity
- 200G TDECQ with addition of 1T DFE
- Overshoot penalty
- **□** Summary.

Background

- Most optical DSP implementations include a 1T DFE and optional MLSE
 - To save power MLSE by default will be off to save power
- The benefit of enabling 1T DFE in TDECQ
 - Reduces reliance on transmitter overshoot to reduce TDECQ where it may degrade link BER as TDECQ doesn't incorporate any compression or ADC ENOB penalties
 - Enabling 1T DFE reduces TDECQ ~0.5 dB on complaint TDECQ transmitter
 - For transmitter with low overshoot and high TDECQ >5 dB there is ~1.5 dB reduction
 - Allow passing slower more linear waveforms with better link BER
 - Improved correlation of TDECQ penalty with receive sensitivity
 - Scope supplier already have implemented 1T DFE to EECQ which is based on TDECQ for electrical penalty
- The drawback of enabling 1T DFE in TDECQ
 - Burst error will be the main drawback but we do have ILT for optics and DFE Bmax can be limited to 0.35
 - Shift some margin from receiver to transmitter.

Receiver Sensitivity

- Assumed receiver sensitivity as shown in Figure 180-4 show 1:1 relationship between TDECQ and receive sensitivity but actual data from he_3dj_01_2505 1:0.4 relationship
 - The reason for shallow slope is that the HW receiver is that hardware receiver is more capable compared to TDECQ equalizer
 - Adding 1T DFE to the TDECQ equalizer will improve TECQ penalty with receive sensitivity penalty.

Figure 180–4—Receiver sensitivity (OMA_{outer}), each lane (max)

Adding 1T DFE to the TDECQ Equalizer

■ Add 1T DFE to the TDECQ equalizer

Table 180-15, 181-15, 182-15, and 183-15.

Table 180-15—Reference equalizer tap coefficients

		Value	
Parameter	Symbol	Minimum	Maximum
Feed-forward equalizer (FFE) length	N _b	15	
Number of equalizer pre-cursor taps	_	0	3
Main tap coefficient limit	c(0)	0.9	2.5
Normalized equalizer coefficient limits: ^a $i = -3$ $i = -2$ $i = -1$ $i = 1$ $i = 2$ $i = 3$ $i = 4$ $i = 5$ $i = 6$ $i \ge 7$	c(i)	-0.15 -0.1 -0.5 -0.6 -0.2 -0.15 -0.15 -0.15 -0.15 -0.15	0.1 0.25 0.1 0.2 0.3 0.15 0.15 0.15 0.15
Equalizer gain ^b	_	1	

^a The main tap is marked by i = 0. The minimum and maximum values are relative to this tap's coefficient. ^b The sum of the equalizer coefficients.

Parameter	Symbol	Minimum	Maximum
Number of feedback taps	B(1)	0	0.35

Configuring TDECQ with DFE

- Keysight Scope FlexDCA A.07.81.6 already supports TDECQ with 1T DFE
 - Instead of using TDECQ equalizer generic
 Reference Rx is selected
 - Then under Linear Equalizer TDECQ Equalizer is selected
 - Then set SER and other TDECQ parameters.

200G MZM TDECQ with Addition of DFE

■ TDECQ reduction with 1T DFE for TX with low TECQ

- TDECQ with 15T FFE is 2.84 dB
 - FFE Taps -0.017081, 0.078124, -0.275357,
 1.490161, -0.321593, 0.124306, 0.092210, 0.044500, -0.074899,
 0.056275, -0.028502, 0.021386, 0.014024, 0.012652, -0.003738
- TDECQ with 15T FFE + 1T DFE is 2.59 dB
 - FFE Tap -0.008442, 0.045556, -0.166764,
 0.995970, 0.181786, -0.000968, 0.031856, 0.005959, -0.042369,
 0.019865, -0.005469, 0.007087, 0.004892, 0.005041, -0.000504
 - DFE Tap 0.283636.

200G MZM TDECQ with Addition of DFE

- TDECQ reduction with 1T DFE for TX with high TECQ
 - TDECQ with 15T FFE is 5.76 dB
 - FFE Taps -0.060232, 0.182759, -0.506969,
 1.818684, -0.532089, 0.157879, 0.044774, 0.005974, -0.044100,
 0.035797, -0.010159, 0.003285,
 0.018303, 0.004811, -0.029168
 - TDECQ with 15T FFE + 1T DFE is 4.13 dB
 - FFE taps -0.017394, 0.073976, -0.226514,
 0.979468, 0.253183, -0.073706,
 0.026715, -0.012512, -0.023035,
 0.008908, 0.006088, -0.000323,
 0.013989, 0.010717, -0.019560
 - DFE Tap 0.343287

Benefit of Adding DFE to TDECQ

- Adding 1T DFE to current 15T FFE TDECQ offer more gain than even a 25T FFE
- Adding 1T DFE also improves TDECQ to Receiver sensitivity penalty
 - Receive OMA sensitivity 2.4E-4 PreFEC are:
 - TX1 OMA Sensitivity -6.1 dB
 - TX2 OMA Sensitivity -4.6 dB
 - Delta sensitivity = 1.5 dB
 - Delta TDECQ with 15T FFE = 2.92 dB
 - Delta TDECQ with 15T FFE + 1T DFE = 1.54 dB.

Benefit of Adding DFE to TDECQ

- TDECQ with 15T FFE + 1T DFE improves transmitter penalty to matches receive sensitivity penalty 1:1
 - He_3dj data are from <u>he_3dj_01_2505</u>
 and reported data were Block BER
 - New data with 15T FFE and 15T FFE+1T
 DFE are pre-FEC BER
 - With 1T DFE pre-FEC sensitivity matches TECQ penalty!

How to Further Improve TDECQ

Currently TDECQ doesn't incorporate PAR (Peak to Average) penalty

- Without PAR penalty overshoot can drive the TDECQ lower while link BER degrades
- TDECQ not having PAR penalty the overshoot should be reduced <12% as receiver with DFE don't require such large overshoot!</p>

Overshoot vs Rx performance

Overshoot vs Ceq Protecting Receiver for Excess Overshoot

 Transmitter overshoot is a direct quantitative parameter protecting the receiver for excess pre-emphasis/overshoot

ADC SNR Definition

■ ADC SNR is defined as following in textbooks <u>wirelesspi.com</u>

- $SNR = 6.02N + 1.76 20log_{10} \frac{Vmax}{A}$, where N is number of ADC bits, Vmax upper range of ADC, and A is the amplitude.
 - A 6 bits ADC with zero overshoot has an SNR of 37.88 dB
 - A 6 bits ADC with 22% overshoot has an SNR of 36.15 dB or 1.7 dB of PAR penalty
- Reducing overshoot to 12% reduces PAR penalty to 1 dB which is a good trade-off for a TDECQ with 1T DFE
 - Data on previous page show negligible penalty with 12% overshoot.

Summary

- With FFE receiver transmitter are set with high overshoot in order to improve TDECQ which often results in inferior block BER
 - Another issue with FFE only TDECQ given that receiver has a DFE the TECQ penalty doesn't correlate with receiver sensitivity
- The current 15T FFE is a good compromise between complexity, power, and benefit
 - Adding 1T DFE to the 15T FFE offer much better performance than even a 25T FFE
- Adding 1T DFE to TDECQ/EECQ with Bmax≤0.35 penalty due to burst error is negligible and provide following benefits
 - Reduces TDECQ by ~0.5 dB for compliant (≤3.4) transmitters
 - Reduces TDECQ by ~1.5 dB for slow high TDECQ (≥5.0) transmitters
 - Given the amount of improved proposed DFE TDECQ limit ≤3.1 dB
- Another key benefit of adding 1T DFE to the TDECQ equalize is the significant improvement of TDECQ penalty correlation with receive sensitivity penalty
 - To mitigate PAR penalty overshoot should be limited to ≤12%
- Comments 381, 382, 383, and 384 remedy: enable 1T DFE for TDECQ with Bmax≤0.35, reduce TDECQ limit to 3.1 dB, and limit Overshoot to 12%.

Thank You!