
1IEEE P802.3dj Task ForceJuly 2025

802.3dj D2.0
Comment Resolution

Logic Track
Gary Nicholl (Cisco), Logic Track Lead Editor
Eugene Opsasnick (Broadcom), Logic Editor

Matt Brown (Alphawave Semi), 802.3dj Chief Editor
Xiang He (Huawei), Logic Editor

K. Shrikhande (Marvell), Logic Editor
<others>

2IEEE P802.3dj Task ForceJuly 2025

Introduction

● This slide package was assembled by the 802.3dj editorial team to provide
background and detailed resolutions to aid in comment resolution.

● Specifically, these slides are for the logic track comments

3IEEE P802.3dj Task ForceJuly 2025

Inner FEC bin counters

Comment #68, [561, 282, 283], 570

4IEEE P802.3dj Task ForceJuly 2025

Comment #68, [561, 282, 283], 570 – FEC bin counters (Background)

The following counters are currently defined for RS-FEC:

FEC_cw_counter
FEC_corrected_cw_counter
FEC_uncorrected_cw_counter
FEC_symbol_error_counter_<0:n> [Note: per PCS lane]
FEC_codeword_error_bin_<1:15>

The following counters are currently defined for Inner-FEC:

Inner_FEC_corrected_cw_counter
Inner_FEC_uncorrected_cw_counter
Inner_FEC_codeword_error_bin_<0:n>
Inner_FEC_total_bits_counter
Inner _FEC_corrected_bits_counter

● Consistent set of counters for all RS-FEC (Clauses 119,
161, 172, 176) and using a common set of MDIO
registers (45)

● FEC bin counters initially added in Clauses 161 (3ck)
and 172 (3df) without a bin_0 counter.

● FEC bin counters being added in Clauses 119 and 175
as part of 3dj are following the same approach for
consistency, and to reuse existing MDIO registers (i.e.
no bin_0)

● If desired the bin_0 count can be derived from (total_cw
- corrected_cw - uncorrected_cw).

● New set of counters being added for new InnerFEC
(Clauses 177 and 184) being added in 3dj.

● No legacy to be concerned about. New set of MDIO
registers for InnerFEC (separate from MDIO registers
for RS-FEC)

● In this case a bin_0 counter was included as a
convenience for the user

● Observation in comment: No “Inner_FEC_cw_counter”
currently defined. Should there be?

5IEEE P802.3dj Task ForceJuly 2025

Comment # [561, 282, 283] – FEC bin counters

● The three comments suggested to remove bin_0 because it is
redundant (can be derived from existing counters)
Inner_FEC_codeword_error_bin_0 = Inner_FEC_total_bits_counter/128 -
Inner_FEC_corrected_cw_counter - Inner_FEC_uncorrected_cw_counter

6IEEE P802.3dj Task ForceJuly 2025

Comment # [561, 282, 283] – Proposed response

Proposed response:

● Keep bin_0 counter for Inner FEC as
currently defined in Clause 177 and 184 (no
change to draft)

● Add a counter for total number of codewords
○ Inner_FEC_cw_counter

Pending CRG discussion and potential straw poll(s)
if necessary.

7IEEE P802.3dj Task ForceJuly 2025

PCS stateless encoder/decoder

Comments [669, 432, 433, 670, 331, 431, 584, 676, 339]

8IEEE P802.3dj Task ForceJuly 2025

Comment #669, #432, #433 (Handling scrambler error extension)

What’s the issue?

-> The 64b/66b stateless decoder was defined
to invalidate (substitute an EBLOCK_R) in the first
block after an uncorrectable RS-FEC codeword to
cover the case of the descrambler “error extension”.
But it has two issues as defined in 802.3df, clause
172.

1. The descrambler works on 257-bit blocks
before inverse transcoding, so we really need
to invalidate all four 64b blocks that make up
the first 257b block.

2. It does not account for the interleave of blocks
from the two flows of the 800G/1.6T PCS RX
function.

#1 needs to be fixed in Clauses 119, 172 and 175.
#2 needs to be fixed in Clauses 172 and 175.

9IEEE P802.3dj Task ForceJuly 2025

Comment #669, #432, #433 (Handling scrambler error extension 2)

Comment #432 points out the same issues for Clause 172 (800GbE PCS).

Comment #433 points out the same issues for Clause 175 (1.6TbE PCS).

10IEEE P802.3dj Task ForceJuly 2025

Comment #669, #432, #433 (Handling scrambler error extension - 3)

Note:

● 200G/400G have a single RX flow.
800G/1.6T PCS RX perform
RS-FEC decode and Descramble
separately within each of their two
flows.

● Descramble is performed on the
257b blocks (before Reverse
transcode).

● 64B/66B decode is performed
after merging of the two flows into
a single data flow (800G & 1.6T)

● 800G PCS RX flows merge on
66b block boundaries and 1.6T
PCS RX merges 257b blocks.

11IEEE P802.3dj Task ForceJuly 2025

Comment #669, #432, #433 (Handling scrambler error extension - 4)

The rule in this row is intended to
invalidate (set to EBLOCK_R) the
block following any block marked as
an error by the RS-FEC decoder due
to “descrambler error extension”.

12IEEE P802.3dj Task ForceJuly 2025

Comment #669, #432, #433 (Scrambler error extension example)

13IEEE P802.3dj Task ForceJuly 2025

Comment #669, #432, #433 (Handling scrambler error extension - 6)

Fix approach:

The RS-FEC decode subclause in Clause 119 currently requires that all 66-bit blocks of two interleaved
codewords are to be marked as ERROR blocks if either of the codewords is uncorrectable. Add a
statement in the FEC decode section that the four 66-bit blocks (that make up the following 257-bit block)
following an uncorrectable codeword must also be marked as ERROR blocks due to scrambler error
extension.

● Require the full fix for all new PHYs that may use the stateless decoder.
○ Applies to all 200GE/400GE/1.6TE PHYs

■ All 1.6TE PHYs are new in .3dj.
■ The stateless decoder option for 200/400GE PHYs is new in .3dj.

○ Modify (simplify) the stateless decoder definition to remove useless ERROR marking
○ Add the new text to Clause 119, and add references to it from Clause 175.

● Optional (should) do “full fix” in Clause 172 for 800GE PHYs, but may keep the current definition of
the stateless decoder (in 802.3df) due to project scope.

14IEEE P802.3dj Task ForceJuly 2025

Comment #669, #432, #433 (Handling scrambler error extension - Changes 1)

Update the 3rd paragraph of 119.2.5.3 “Reed-Solomon decoder” with an added sentence:

If bypass error indication is not supported or not enabled, when the Reed-Solomon decoder determines that
a codeword contains errors that were not corrected, it shall cause the PCS receive function to set every 66-bit
block within the two associated codewords to an error block (set to EBLOCK_R). This may be achieved by
setting the synchronization header to 11 for all 66-bit blocks created from these codewords by the
256B/257B to 64B/66B transcoder. When the stateless 64B/66B decoder is used as defined in 119.2.5.8.2,
then the first four 66-bit blocks following the uncorrected codewords shall also be set to an error block.

Note: The above also applies to 172.2.5.3 and 175.2.5.3 by cross-reference to 119.2.5.3.

15IEEE P802.3dj Task ForceJuly 2025

Comments #331 (Excessive cross-references)

Comment #331 points out that the stateless encoder
(and stateless decoder) have an excessive amount of
nested cross-references that can be simplified.

This can be done as part of the new simplified
stateless encoder and decoder.

16IEEE P802.3dj Task ForceJuly 2025

Comment #669, #432, #433 (Handling scrambler error extension - Changes 2)

Change 119.2.5.8.2 “Stateless decoder” as follows:

The stateless decoder generates 200GMII/400GMII transfers based only on the current and preceding 66-bit
blocks and PCS reset. The decoder shall decode each 66-bit block rx_coded<65:0> to a 72-bits vector
rx_raw<71:0> (see 119.2.6.2.2) according to the rules in Table 172-4. Constants LBLOCK_R and
EBLOCK_R are defined in 119.2.6.2.1. Variables reset, rx_raw, and rx_coded are defined in 119.2.6.2.2.
Functions R_TYPE and DECODE, and the block types are defined in 119.2.6.2.3. When PCS reset is asserted,
RXD<63:0> and RXC<7:0> are set to the constant LBLOCK_R (see 119.2.6.2.1). When PCS reset is not
asserted, RXD<63:0> and RXC<7:0> are decoded from rx_coded<65:0> as defined in 119.2.3.

17IEEE P802.3dj Task ForceJuly 2025

Comment #669, #432, #433 (Handling scrambler error extension - Changes 3)

Update 175.2.5.9 “64B/66B decoder” as follows:

The receive PCS decodes 66-bit blocks to produce RXD<63:0> and RXC<7:0> for transmission to the
1.6TMII. One 1.6TMII transfer is decoded from each 66-bit block. The receive PCS may use either the state-
diagram decoder defined in Figure 119-15 or the stateless decoder defined in 172.2.5.9.2 119.2.5.8.2.

18IEEE P802.3dj Task ForceJuly 2025

Comment #669, #432, #433 (Handling scrambler error extension - Changes 4)

Making changes to Clause 172 is complicated by the current stateless decoder definition in 802.3df-2024
and scope of the 802.3dj project.

The editors propose wording to the effect of: the new Clause 119 stateless encoder should be used, but
the current stateless decoder may still be used.

Change 172.2.5.9 “64B/66B decoder” as follows:

The receive PCS decodes 66-bit blocks to produce RXD<63:0> and RXC<7:0> for transmission to the
800GMII. One 800GMII transfer is decoded from each 66-bit block. The receive PCS shall use one of the
two decoding methods, that are defined in 172.2.5.9.1 and 172.2.5.9.2 a stateful method as defined in
172.2.5.9.1 or a stateless method. If using a stateless method, then the stateless decoder as defined in
119.2.5.8.2 should be used while the stateless decoder as defined in 172.2.5.9.2 may be used.

19IEEE P802.3dj Task ForceJuly 2025

Comment #670 (Simpler Stateless Encoder)

#670 suggests simplifying the stateless encoder in a
similar way to the stateless decoder.

Following the approach used for changing the stateless
decoder:
- The new definition should be added to Clause 119.
- Clause 175 is updated to refer to Clause 119.
- Clause 172 can refer to Clause 119 as an option to the
encoder already defined in Clause 172.

20IEEE P802.3dj Task ForceJuly 2025

Comment #670 (Simpler Stateless Encoder) - 2

Change 119.2.4.1.2 “Stateless encoder” as follows:

The stateless encoder generates generates 66-bit blocks based only on the current and preceding
200GMII/400GMII transfers and PCS reset. Each 200GMII/400GMII transfer is mapped into a 72-bit vector
tx_raw<71:0> (see 119.2.6.2.2). The encoder shall encode each tx_raw<71:0> to a 66-bit block
tx_coded<65:0> according to the rules in Table 172-1. Constants LBLOCK_T and EBLOCK_T are defined in
119.2.6.2.1. Variables reset, tx_raw, and tx_coded are defined in 119.2.6.2.1. Functions T_TYPE and
ENCODE, and the block types are defined in 119.2.6.2.3. When PCS reset is asserted, tx_coded<65:0> is set
to the constant LBLOCK_T (see 119.2.6.2.1). When PCS reset is not asserted, tx_coded<65:0> is encoded
from the TXD<63:0> and TXC<7:0> signals as defined in 119.2.3.

21IEEE P802.3dj Task ForceJuly 2025

Comment #670 (Simpler Stateless Encoder) - 3

Update 175.2.4.1 “64B/66B encoder” as follows:

The transmit PCS may use either the state-diagram encoder defined by Figure 119-14 or the stateless
encoder defined in 172.2.4.1.2 119.2.4.1.2.

22IEEE P802.3dj Task ForceJuly 2025

Comment #670 (Simpler Stateless Encoder) - 4

Change the text in 172.2.4.1 “64B/66B encoder” as follows:

The transmit PCS generates 66-bit blocks based on the TXD<63:0> and TXC<7:0> signals received from
the 800GMII. Each 800GMII transfer is encoded into one 66-bit block. The contents of each 66-bit block are
contained in a vector tx_coded<65:0> with tx_coded<1:0> containing the sync header and the remainder of
the bits the payload. The transmit PCS shall use the encoding method defined in either 172.2.4.1.1 or
172.2.4.1.2. one of two encoding methods, a stateful method as defined in 172.2.4.1.1 or a stateless method.
If using a stateless method, then the stateless encoder as defined in 119.2.5.1.2 should be used while the
stateless encoder as defined in 172.2.4.1.2 may be used.

23IEEE P802.3dj Task ForceJuly 2025

Comments #431, 584, 676
 (Allowing stateless encoder/decoder for all 200G/400G PHYs)

#431 and #584 make the same proposed change to
“clean up” 119.2.4.1 and 119.2.5.8.

#676 proposes a specific wording change in the same
section that should also happen (remove “alternative”).

24IEEE P802.3dj Task ForceJuly 2025

Comments #431, 584, 676
 (Allowing stateless encoder/decoder for all 200G/400G PHYs) - 3

Change the text in 119.2.4.1 as follows:

The transmit PCS generate 66-bit blocks using the state-diagram encoder defined in 119.2.4.1.1 for any
200GBASE-R or 400GBASE-R PHY type, or using the alternative stateless encoder defined in 119.2.4.1.2
for the following PHY types:

— 200GBASE-KR1
— 200GBASE-CR1
— 200GBASE-DR1
— 200GBASE-DR1-2
— 400GBASE-KR2
— 400GBASE-CR2
— 400GBASE-DR2
— 400GBASE-DR2-2

25IEEE P802.3dj Task ForceJuly 2025

Comments #431, 584, 676
 (Allowing stateless encoder/decoder for all 200G/400G PHYs) - 2

Change the text in 119.2.5.8 as follows:

The receive PCS decode 66-bit blocks using the state-diagram decoder defined in 119.2.5.8.1 for any
200GBASE-R or 400GBASE-R PHY types, or using the alternative stateless decoder defined in 119.2.5.8.2.
for the following PHY types:

— 200GBASE-KR1
— 200GBASE-CR1
— 200GBASE-DR1
— 200GBASE-DR1-2
— 400GBASE-KR1
— 400GBASE-CR1
— 400GBASE-DR1
— 400GBASE-DR2

26IEEE P802.3dj Task ForceJuly 2025

Comment #339
 (Stateless and State Diagram encoder/decoder equivalence)

Comment #339 assumes the stateless
encoder/decoder is an equivalent description of
the state-diagram-based encoder/decoder. They
are in fact different and produce different output
sequences.

But the comment does point out some text that
needs to be updated,

The suggested remedy is not useful since it
assumes the stateless and stateful descriptions
are equivalent.

27IEEE P802.3dj Task ForceJuly 2025

Comment #339 - Changes

The first sentence of the first two
paragraphs in 119.2.6.3 contain the
same “shall” requirement as is stated in
the last sentence of the subclause. The
last sentence is now incorrect in
requiring the state-machine
encoder/decoder since the stateless
encoder/decoder are now an acceptable
alternative as described in changes to
119.2.4.1 and 119.2.5.8.

→ Delete the last sentence of 119.2.6.3.
(This was missed in the changes to the
previous drafts.)

28IEEE P802.3dj Task ForceJuly 2025

Alignment Marker Padding

Comment #454

29IEEE P802.3dj Task ForceJuly 2025

Comment #454

30IEEE P802.3dj Task ForceJuly 2025

Comment #454 - Current text in 175.2.4.6
The comment is requesting an update to the text
highlighted in yellow to more clearly define what is meant
by a “free-running PRBS9 pattern generator” in the
context of the “133-bit pad” that is inserted at the end of
the alignment marker group.

The two valid options are:

1. The PRBS9 pattern generator increments for every
bit of the 133-bit pad, with the state of the pattern
generator being maintained between 133-bit pads.
The initial value of the PRBS9 pattern generators
after PCS reset may be any pattern other than all
zeros.

2. The PRBS9 pattern generator may either
increment every bit of the 133-bit pad, with the
state of the pattern generator being maintained
between 133-bit pads, or it may increment with
every transmitted bit, with the current state of the
pattern generator during every 133-bit pad being
used for the the pad value.

The initial value of the PRBS9 pattern generators
after PCS reset may be any pattern other than all
zeros.

31IEEE P802.3dj Task ForceJuly 2025

Comment #454 - Option #1

Update the text in the 2nd paragraph of 175.2.4.6 as follows:

An alignment marker group is composed of the alignment markers for all 16 PCS lanes plus an additional 133-bit pad
and a 3-bit status field to yield the equivalent of eight 257-bit blocks. The alignment marker group is divided evenly
between the two flows and is aligned to the beginning of four FEC messages across both flows. The alignment
marker group interrupts any data transfer that is already in progress. The pad bits at the end of the alignment marker
group shall be set to a free-running PRBS9 pattern in each flow, defined by the polynomial
x9 + x5 + 1. The initial value of the PRBS9 pattern generators after PCS reset is deasserted may be any pattern other
than all zeros, and the pattern generator state is retained from the previous pad. The 3-bit transmit alignment marker
status field (tx_am_sf) carries local and remote FEC degrade status using an end-to-end process described in 116.6
and is appended to the padding in flow 1.

32IEEE P802.3dj Task ForceJuly 2025

Comment #454 - Option #2

Update the text in the 2nd paragraph of 175.2.4.6 as follows:

An alignment marker group is composed of the alignment markers for all 16 PCS lanes plus an additional 133-bit pad
and a 3-bit status field to yield the equivalent of eight 257-bit blocks. The alignment marker group is divided evenly
between the two flows and is aligned to the beginning of four FEC messages across both flows. The alignment
marker group interrupts any data transfer that is already in progress. The pad bits at the end of the alignment marker
group shall be set to a free-running PRBS9 pattern in each flow, defined by the polynomial
x9 + x5 + 1. The initial value of the PRBS9 pattern generators after PCS reset is deasserted may be any pattern other
than all zeros. The pattern generator state may be retained from the previous pad, or it may advance continuously
with the pad set to the current state at the time of pad insertion. The 3-bit transmit alignment marker status field
(tx_am_sf) carries local and remote FEC degrade status using an end-to-end process described in 116.6 and is
appended to the padding in flow 1.

33IEEE P802.3dj Task ForceJuly 2025

Comment #454 - Option #3

Update the text in the 2nd paragraph of 175.2.4.6 as follows:

An alignment marker group is composed of the alignment markers for all 16 PCS lanes plus an additional 133-bit pad
and a 3-bit status field to yield the equivalent of eight 257-bit blocks. The alignment marker group is divided evenly
between the two flows and is aligned to the beginning of four FEC messages across both flows. The alignment
marker group interrupts any data transfer that is already in progress. The pad bits at the end of the alignment marker
group shall be set to a free-running PRBS9 pattern in each flow, defined by the polynomial
x9 + x5 + 1. The initial value of the PRBS9 pattern generators after PCS reset is deasserted may be any pattern other
than all zeros. The 3-bit transmit alignment marker status field (tx_am_sf) carries local and remote FEC degrade
status using an end-to-end process described in 116.6 and is appended to the padding in flow 1.

34IEEE P802.3dj Task ForceJuly 2025

PCS Delay Constraint

Comment #589

35IEEE P802.3dj Task ForceJuly 2025

Comment #589

36IEEE P802.3dj Task ForceJuly 2025

Comment #589

37IEEE P802.3dj Task ForceJuly 2025

Comment #589, con’t

Change text in 175.5 as follows:

175.5 Delay constraints

The maximum delay contributed by the 1.6TBASE-R PCS (sum of transmit and receive delays at one end of the link)
shall be no more than 640 000 bit times, equivalent to 1250 pause_quanta or 400 ns 1 280 000 bit times, equivalent to
2500 pause_quanta or 800 ns. A description of overall system delay constraints and the definition of bit times and
pause_quanta can be found in 174.4 and its references.

38IEEE P802.3dj Task ForceJuly 2025

Comment #589, cntd

Proposed changes to Table 174-4

Change 1.6TBASE-R PCS or 1.6TXS delay
constraint values in the table as follows:

From 640 000 to 1 280 000 bit times
From 1250 to 2500 pause_quanta
From 400 to 800 ns

Current Table 174-4 in D2.0

39IEEE P802.3dj Task ForceJuly 2025

PMA layering tables

Comment #75

40IEEE P802.3dj Task ForceJuly 2025

Comment # 75 (Cl176)

41IEEE P802.3dj Task ForceJuly 2025

Comment # 75 (Cl176): possible change to the table 176-1

Table 176-1 with a separate row for the 1.6TAUI-16 case

Sublayer or interface above PMA Sublayer or interface below PMA

xBASE-R PCS, or
xBASE-R BM-PMA

xAUI-n,
xBASE-R Inner FEC, or
xBASE-R n-lane PMD

DTE xXS xAUI-n

1.6TAUI-16 1.6TAUI-8,
1.6TBASE-R Inner FEC, or
1.6TBASE-R 8-lane PMD

Table 176-1 in 802.3dj D2.0

42IEEE P802.3dj Task ForceJuly 2025

Comment # 75 (Cl176): possible change to the table 176-2

Sublayer or interface above PMA Sublayer or interface below PMA

xAUI-n PHY xXS, or
xBASE-R BM-PMA

800GAUI-4 800GBASE-LR1 Inner FEC

1.6TAUI-8 1.6TAUI-16

Table 176-2 with a separate row for the 1.6TAUI-16 case

Table 176-2 in 802.3dj D2.0

43IEEE P802.3dj Task ForceJuly 2025

Convolutional Deinterleaver

Comment #88

44IEEE P802.3dj Task ForceJuly 2025

Comment #88 – convolutional deinterleaver

Bucket pull:
The proposed response is “PROPOSED ACCEPT IN PRINCIPLE.
Add figure to illustrate the convolutional deinterleaving process”.
There isn’t enough guidance for the figure; Preferably, the commenter
(or the editor, if he volunteers) should implement and present the
suggested figure, otherwise the CRG does not know what it is
supposed to accept. Until then, the proposed response should be
REJECT: the SR does not include sufficient detail to implement.

Proposed change:
Insert the following figure in “177.5.8 Convolutional deinterleaver”

45IEEE P802.3dj Task ForceJuly 2025

Clause 177 test vectors and pad insertion

Comment #110

46IEEE P802.3dj Task ForceJuly 2025

Comment #110 – pad insertion location

Figure 177-2

In Figure 177-2, “pad insertion” is after “8:1
bit-pair interleaver”.

In Figure 177-8 and 177A-1, it seems like “pad
insertion” is before the “8:1 bit-pair interleaver”.

● In Figure 177-2, pad is inserted as a 1024-bit block (8x128b).
● Figure 177-8 describes how is this 1024-bit pad is generated, just like normal payload.

○ 8 “pad codewords” encoded with the same Inner FEC are 8:1 bit-pair interleaved.
○ This allows both transmit and receive to use the exact same processing flow for both,

without any special handling.
● Figure 177A-1 is an informative equivalent way of implementing the above process,

inserted the pad message bits before Inner FEC encode. The output is exactly the same
as Figure 177-2.

47IEEE P802.3dj Task ForceJuly 2025

Comment #110 – proposed solution

Simple solution:

● Replace Figure 177A-1 with the transmit functions in Figure 177-2
shown to the right with the new test points.

TP1

TP2

TP3

TP5

TP4

48IEEE P802.3dj Task ForceJuly 2025

ER1 loopbacks

Comment #208

49IEEE P802.3dj Task ForceJuly 2025

Comment #208 - ER1 loopbacks (1)

The figure shows the FEC sublayer

Red lines indicate ‘host side’ loopbacks
Blue lines indicate ‘modem’ loopbacks
Purple line indicates receive direction ‘media’ loopback

Insert new subclause 186.2.5 to describe these loopbacks,
add new management variables to control these loopbacks
(one to indicate whether each loopback is supported, one
to indicate whether it is activated), and update PICS (more
detail on next slide)

50IEEE P802.3dj Task ForceJuly 2025

Comment #208 - ER1 loopbacks (2)

The figure shows the PMA sublayer

Purple line indicates transmit direction ‘media’ loopback
(only one polarity shown to avoid clutter)

Insert new subclause 186.3.5 to describe this loopback,
add new management variables to control this loopback,
and update PICS

WRT the PICS:
OIF requires at least one of the following pairs to be
supported:

- Modem TX and modem RX
- Modem TX and host RX
- Media TX and modem RX
- Host TX and host RX

The first, second, and fourth options are entirely in the
FEC sublayer, so easy to describe in the PICS for the FEC
sublayer as a set of 3 options, at least one of which must
be done. The third option is spread across the FEC and
PMA sublayers, which is awkward, so it is proposed to not
include it.

