4/18/2023

Error Propagation Analysis of MLSE

Hossein Shakiba Affiliated with Huawei Technologies Canada April 20, 2023

Outline

- Motivation and Background
- Conditional Probability of a Burst
- Error Propagation Factor and Average Burst Length
- Two Extreme Conceptual examples
 - Comparisons to DFE
 - Simplifications for White Gaussian Noise

• 24 Study Cases

- Link Parameters
- Summary of Results
- CDF of Error Burst
- PDF of Error Burst
- > EPF
- Error Burst Length
- > Error Burst Length against Spec
- Summary and Conclusions

Motivation

- Error propagation in MLSE is not nearly as known as in DFE
- Noise coloring makes this more convoluted
- This contribution describes an attempt to analyze and statistically model MLSE error propagation in a similar manner to the well known EPP model for the DFE
- At this time this contribution is only for awareness and is not proposing any specific change or direction
- If there is interest to turn the results into an action, more study is recommended particularly from the aspects of:
 - > Model validation by means of independent studies and simulations
 - > FEC analysis (e.g. statistical) based on the developed MLSE error propagation model
 - > More ideas are welcome ...

Background

• Contribution shakiba_3df_01b_2211.pdf showed that error events of an L-PAM $1 + \alpha D$ MLSE are dominated by a zig-zag pattern in the form of alteranting adjacent levels:

• Contribution shakiba_3dj_01_230420.pdf calculated the probability of a *j*-error event, an error event that causes a burst of *j* errors:

$$P(B_{MLSE} = j) \approx 2\left(\frac{L-1}{L}\right)^{j} \left(1 - CDF_{noise, jEE}\left(\frac{main}{L-1}\frac{\left(\operatorname{trace}(\rho_{noise, jEE})\right)^{\frac{3}{2}}}{\sqrt{\Sigma_{vertical}\Sigma_{horizental}(\rho_{noise, jEE})}}\right)\right)$$

Conditional Probability of a Burst

• As a result the conditional probability of a burst can be calculated:

$$P(B_{MLSE} = j | Error \, Event) = \frac{P(B_{MLSE} = j)}{\sum_{j} P(B_{MLSE} = j)} \approx \frac{2\left(\frac{L-1}{L}\right)^{j} \left(1 - CDF_{noise, jEE}\left(\frac{main \left(\operatorname{trace}(\rho_{noise, jEE}\right)\right)^{\frac{3}{2}}}{\sqrt{\sum_{j=1}^{\infty}\left(\frac{L-1}{L}\right)^{j}} \left(1 - CDF_{noise, jEE}\left(\frac{main \left(\operatorname{trace}(\rho_{noise, jEE}\right)\right)^{\frac{3}{2}}}{\sqrt{\sum_{j=1}^{\infty}\left(\frac{L-1}{L}\right)^{\frac{3}{2}}} \left(1 - CDF_{noise, jEE}\left(\frac{main \left(\operatorname{trace}(\rho_{noise, jEE}\right)\right)^{\frac{3}{2}}}{\sqrt{\sum_{j=1}^{\infty}\left(\frac{L-1}{L}\right)^{\frac{3}{2}}}}}\right)}\right)}}\right)}$$

Error Propagation Factor and Average Burst Length

• Similar to DFE, we can define an Error Propagation Factor (EPF) for MLSE:

$$EPF_{MLSE}(\alpha, \sigma_{noise}, j) = \frac{P(B_{MLSE}=j+1|Error\ Event)}{P(B_{MLSE}=j|Error\ Event)} \approx \frac{L-1}{L} \frac{1-CDF_{noise,(j+1)EE}\left(\frac{main}{L-1}\left(1+(j-1)(1-\alpha)^2+\alpha^2\right)\right)}{1-CDF_{noise,jEE}\left(\frac{main}{L-1}\left(1+(j-1)(1-\alpha)^2+\alpha^2\right)\right)} \quad , j = 1, 2, \cdots$$

• However, EPF_{MLSE} is in general a function of j (burst length) and unlike DFE, error propagation of MLSE cannot be statistically modeled with a simple exponential distribution

> Recall for DFE: $EPF_{DFE}(\alpha, \sigma_{noise}) = EPP_{DFE}(\alpha, \sigma_{noise}) = P(Next Error|Current Error)$

• For calculating average burst length symbol error rate is needed:

$$SER_{MLSE} \approx 2\sum_{j=1}^{\infty} j\left(\frac{L-1}{L}\right)^{j} \left(1 - CDF_{noise, jEE}\left(\frac{main}{L-1}\left(1 + (j-1)(1-\alpha)^{2} + \alpha^{2}\right)\right)\right)$$

which results in an average burst length of:

$$\bar{B}_{MLSE}(\alpha, \sigma_{noise}) = \frac{SER_{MLSE}}{DER_{MLSE}} \approx \frac{\sum_{j=1}^{\infty} j \left(\frac{L-1}{L}\right)^{j} \left(1 - CDF_{noise, jEE}\left(\frac{main}{L-1}\left(1 + (j-1)(1-\alpha)^{2} + \alpha^{2}\right)\right)\right)}{\sum_{j=1}^{\infty} \left(\frac{L-1}{L}\right)^{j} \left(1 - CDF_{noise, jEE}\left(\frac{main}{L-1}\left(1 + (j-1)(1-\alpha)^{2} + \alpha^{2}\right)\right)\right)}$$

> Recall for DFE $\overline{B}_{DFE}(\alpha, \sigma_{noise})$ is also equal to $\frac{1}{1 - EPP_{DFE}(\alpha, \sigma_{noise})}$

Two Extreme Conceptual Examples

- We continue the analysis by using two LPF and HPF noise coloring filters (same filters used in shakiba_3dj_01_230420.pdf) to demonstrate the effect of extreme noise coloring on the MLSE error propagation (Gaussian noise assumption)
- Note that to explore trends and limits these cases are extreme and non-real as in real cases noise is always a combination of several components, each colored differently

Conceptual Examples and Comparisons to DFE

- \bullet Consider more practical range of $0.5 < \alpha \leq 1$
- With no coloring average burst length is always shorter than DFE
- With LPF coloring average burst length is always much shorter than DFE
- With HPF coloring, depending on α and SNR, average burst length could become shorter (higher SNR) or longer (lower SNR) than DFE

8 🛛 🎎 HUAWEI

Conceptual Examples and Comparisons to DFE

- White noise:
 - \succ MLSE error propagation is always better than DFE and approaches DFE as $\alpha \rightarrow 1$
- LPF coloring:
 - Bursts rarely occur
 - MLSE error propagation is always much better than DFE
 - Even at high α values most of the errors are single and probability of longer bursts very quickly reduces
- HPF coloring:
 - Single errors rarely occur
 - MLSE error propagation depending on α and SNR could become better (higher SNR) or worse (lower SNR) than DFE (previous slide)
 - Worst error propagation of MLSE is more concentrated around shorter bursts

Simplifications for White Gaussian Noise

• In the case of white Gaussian noise it can be shown that the dependency of *EPF_{MLSE}* to burst length reduces and becomes a single probability:

$$EPF_{MLSE}(\alpha, \sigma_{noise}, j) \approx EPF_{MLSE}(\alpha, \sigma_{noise}) = EPP_{MLSE}(\alpha, \sigma_{noise}) \approx \frac{L-1}{L} \frac{Q\left(\frac{main}{L-1} \frac{\sqrt{1+(1-\alpha)^2 + \alpha^2}}{\sigma_{noise}}\right)}{Q\left(\frac{main}{L-1} \frac{\sqrt{1+(\alpha^2)^2 + \alpha^2}}{\sigma_{noise}}\right)} \quad , White Gaussian definition of the second s$$

• The simple EPP approach of DFE can now be applied, resulting in an average burst length of:

$$\overline{B_{MLSE}}(\alpha, \sigma_{noise}) \approx \frac{1}{1 - EPF_{MLSE}(\alpha, \sigma_{noise})} \quad , White \; Gaussian$$

10

24 Study Cases

ዾ HUAWEI

Study Cases – Link Parameters

- Fix parameters were taken from the original channel documents
- Parameters that needed optimization were optimized using proprietary tool

Channel	Bit Rate [Gb/s]	Thru Swing [mV]	Fext Swing [mV]	Next Swing [mV]	TX FIR [Pre / Post]	Die C _d [fF] L _s [pH]	C _b [fF]	Package [mm] [Ω]	Rx Filter BW	CTLE Pole/Zero Ratio	DFE [# of Taps]	Rx FFE [Pre / Post]	TX SNR [dB]	Rx Noise [V²/GHz]	Jitter Rand / DD [UI]
S1	224	413	413	608	3/1	40/90/110 130/150/140	Included In channel	Included In channel	0.75 x f _b	80/2.5/1	1	6/8	32.5	4.1E-8	0.01 / 0.02
S2	224	442	442	608	3/1	40/90/110 130/150/140	30	30 92.5	0.75 x f _b	100/2.5/1	1	0 / 24	33	4.1E-8	0.01/0.02
S 3	224	413	413	608	3/1	40/90/110 130/150/140	30	30 92.5	0.75 x f _b	80/2.5/1	1	0 / 24	33	4.1E-8	0.01/0.02
S4	224	413	413	608	3/1	40/90/110 130/150/140	40	30 92.5	0.75 x f _b	80/2.5/1	1	0/24	33	4.1E-8	0.01/0.02
S5	224	387	387	608	3/1	40/90/110 130/150/140	30	45 / 0 92	0.75 x f _b	100/2.5/1	1	0/8	32.5	4.1E-9	0.01/0.02

Study Cases – Summary of Results

Channel	Variant	DFE Tap	Average Burst Length							
Channel		$= \alpha$	DFE	MLSE (White)	MLSE (Color)	White/DFE	Color/DFE	Color / White		
S1	Channel 1	0.8116	3.9986	1.4670	2.1722	0.3669	0.5433	1.4807		
	Channel 2	0.7272	3.9704	1.1261	1.5676	0.2836	0.3948	1.3921		
	Channel 3	0.7655	3.9824	1.4472	2.4232	0.3643	0.6085	1.6744		
	Channel 4	0.7850	3.9957	1.3477	2.2957	0.3373	0.5745	1.7034		
	Case 1 *	0.8600	4.0000	NA	NA	NA	NA	NA		
63	Case 2 *	0.8894	4.0000	NA	NA	NA	NA	NA		
32	Case 3	0.8702	3.9998	2.2740	2.5503	0.5685	0.6376	1.1215		
	Case 4	0.8535	3.9968	2.3571	3.0109	0.5898	0.7533	1.2773		
	Conventional	0.9729	3.9901	3.9536	3.0038	0.9908	0.7528	0.7598		
S3	СРР	1.0000	4.0000	4.0000	2.7930	1.0000	0.6982	0.6982		
	NCC	0.9923	3.9960	3.9967	2.8188	1.0002	0.7054	0.7053		
	CPC 30/15 *	0.8389	4.0000	NA	NA	NA	NA	NA		
	CPC 30/20 *	0.8361	4.0000	NA	NA	NA	NA	NA		
	CPC 35/15 *	0.8388	4.0000	NA	NA	NA	NA	NA		
	CPC 35/20 *	0.9843	4.0000	NA	NA	NA	NA	NA		
	NPC 30/15	0.9819	4.0000	3.9589	1.4911	0.9897	0.3728	0.3766		
S4	NPC 30/20	0.9847	4.0000	3.9759	1.7302	0.9940	0.4325	0.4352		
	NPC 35/15	0.9850	4.0000	3.9768	1.7307	0.9942	0.4327	0.4352		
	NPC 35/20	0.9837	4.0000	3.9724	1.9201	0.9931	0.4800	0.4834		
	PCB 10/10 *	0.9906	4.0000	NA	1.6190	NA	0.4048	NA		
	PCB 15/10	0.9815	4.0000	3.9565	2.3201	0.9891	0.5800	0.5864		
	PCB 20/10	0.9542	3.9979	3.8139	2.8469	0.9540	0.7121	0.7465		
SE.	Orthogonal	0.9182	4.0000	3.1120	2.3658	0.7780	0.5915	0.7602		
55	Parallel	0.8625	3.9998	2.1016	2.1778	0.5254	0.5445	1.0362		

* Result are subject to numerical inaccuracy

Study Cases – CDF of Error Burst

MLSE, White MLSE, Color DFE

HUAWEI TECHNOLOGIES CO., LTD.

Study Cases – PDF of Error Burst

MLSE, White MLSE, Color DFE

Study Cases – PDF of Error Burst (log Scale)

MLSE, White MLSE, Color DFE

HUAWEI TECHNOLOGIES CO., LTD.

🛛 火 HUAWEI

Study Cases – EPF

Study Cases – Error Burst Length

- For all cases, average error burst lengths of DFEs have maximized
- Average error burst lengths of MLSE with white noise are always same or less than DFE
- Average error burst lengths of MLSE with colored noise are always less than DFE
- On average, error burst length of MLSE with colored noise is noticeably the least

D	DEE	MLSE					
D	DFE	White	Color				
Max	4.000	4.000	3.0109				
Average	3.9970	2.9904	2.2687				
Min	3.9704	1.1261	1.4911				

Study Cases – Error Burst Length against (OIF) Spec

- Spec = Limit of burst lengths of such size that occur with such probability
- Few channels with DFE fail LR spec, most fail MR spec, and all fail VSR spec
- No channels with MLSE (with either white or colored noise) fail LR spec, few fail MR spec, and several fail VSR spec
- Noise coloring only slightly changes (+/-) long burst probabilities in MLSE

# (%) of Failing		MLSE				
Channels	DFE	White	Color			
ID	3	0	0			
LK	(17.6%)	(0%)	(0%)			
MD	14	3	3			
	(82.4%)	(17.6%)	(17.6%)			
VCP	17	11	11			
VSN	(100%)	(64.7%)	(64.7%)			

Summary and Conclusions

- The following summary is based on analysis of 17 executable cases out of 24 examined cases
- Error propagation of MLSE, with or without noise coloring, always resulted in average shorter bursts compared to DFE (75% shorter for white noise and 57% shorter for colored noise)
- Error propagation of MLSE, with or without noise coloring, always resulted in a less probability of occurrence of longer bursts (> 5) compared to DFE
- Error propagation of MLSE without coloring approached DFE as $\alpha \rightarrow 1$ while coloring helped reduce longer burst probabilities
- Noise coloring caused a concentration of bursts around very short lengths (< 5 and e.g. clear observation and sometimes dominance of errors in pairs) and depending on the channel, could increase or decrease the probability of longer bursts
- On average, noise coloring reduced average burst lengths by 24%
- MLSE, with or without noise coloring, always resulted in less long bursts that are troubling the FEC compared to DFE, and was able to pass 100% / 78.6% / 35.3 % of the cases that failed the LR / MR / VSR burst length specs with DFE
- MLSE is better positioned to work with FEC compared to DFE
- This contribution is currently for awareness and any possible action requires further study and work

