200 Gbps/lane AUI C2M Channel Selection Criteria

Kent Lusted, Intel Corporation Tobey P.-R. Li, MediaTek Mau-Lin Wu, MediaTek

Contributors & Supporters

Contributors:

- Rick Rabinovich, Keysight
- Nathan Tracy, TE Connectivity
- Megha Shanbhag, TE Connectivity
- Sam Kocsis, Amphenol
- Femi Akinwale, Intel
- Howard Heck, Intel
- Adee Ran, Cisco
- Adam Healey, Broadcom

Introduction

- There are complex relationships between the AUI C2M channel characteristics, the AUI C2M BER target, AUI C2M TX/RX complexity, the optical PMD BER target, etc.
- Many AUI C2M channels are available for study via the 3dj TF website as well as through other industry groups
 - Over 100 channels with various assumptions and differing levels of maturity and complexity

Goals

- The goals of this contribution are to:
 - Form several "classes" of reference equalizers for comparison purposes
 - Selectively reduce the number of AUI C2M channels for analysis in order to focus baseline proposal development efforts
 - Provide a relative comparison using COM with these reduced channels
 - Start discussions in the Task Force on which contributed AUI C2M channels should pass versus which should fail
 - Discuss the ones that fall in the middle
- Not debating the C2M specification parameters at this time, including the reference receiver model, package parameters and COM, etc.
 - Please look for the high-level trends, not at the minutiae

Classes of Reference Equalizers

- Various contributions look at different reference equalizers
- Propose different classes for the relative comparison of performance for *direction finding* purposes
 - Taken from https://www.ieee802.org/3/dj/public/23_03/li_3dj_01a_2303.pdf
- (Mild) Class I: 802.3ck C2M-like
 - Class II: 802.3ck C2M-like + Floating Taps
 - Class III: 802.3ck CR-like
- (Spicy!) Class IV: 802.3ck CR-like + MLSE
 - Note: these classes are starting points, not specific recommendations. We had to start with *something* ③

Reference EQ Highlights – By Class

 Class 	s I/II/III/	ΊVΙ			oratory of ium Loss AUI C2M	Exploratory of 802.3dj High Loss AUI C2M			
Paramet	ter 802.3ck C2M	802.3ck CR	802.3ck KR	802.3ck C2M-like	802.3ck C2M-like + FLT	802.3ck CR-like	802.3ck CR-like + MLSE		
DER_C) 1E-5	1E-4	1E-4	1E-5/5E-5/1E-4	1E-5/5E-5/1E-4	1E-5/5E-5/1E-4	1E-5/5E-5/1E-4		
SNR_T	X 32.5	32.5	33	32.5	32.5	33	33		
R_LM	0.95	0.95	0.95	0.95	0.95	0.95	0.95		
TxFIR Length	4 (2 pre)	5 (3 pre)	5 (3 pre)	5 (3 pre)	5 (3 pre)	6 (4 pre)	6 (4 pre)		
eta_0	4.10E-08	9E-09	8.2E-09	2.05E-08	2.05E-08	4.1E-09	4.1E-09		
N_b	4	12	12	8	8	24	24		
N_bg	0	3	3	0	3	6	6		
N_bf	-	3	3	3	3	3	3		
N_f	-	40	40	80	80	80	80		
MLSE	0	0	0	0	0	0	1		
	Ref T	X/RX	Class	I			VI		

Note: these classes are starting points, not specific recommendations.

(Mild)

(Spicy!)

https://www.ieee802.org/3/dj/public/23_03/li_3dj_01a_2303.pdf

Reducing the # of Channels

- Across the inventory of AUI C2M channels available, we attempted to reduce the total number of channels down to ~10-15 unique, representative channels
 - Decrease analysis time
 - Assess the outliers
 - Eliminate obviously bad channels
- Channel parameters that we used include: Fit IL, ERL, ICN, ICR

802.3dj C2M Channel Contributions

Contribution	Channel List	Host Type		
akinwale_3df_01_2209 (21x)	C2M_PCB_85ohms_ <mark>10~30</mark> dB_202208016_v2_thru1	CONV PCB	Extreme impedance	
akinwale_3df_02_2209 (21x)	C2M_PCB_93ohms_ <mark>10~30</mark> dB_202208016_v2_thru1	CONV PCB	corners	
akinwale_3df_03_2209 (21x)	C2M_PCB_100ohms_ <mark>10~30</mark> dB_202208016_v2_thru1	CONV PCB	(not included at this time)	
rabinovich_3df_01_2209 (3x) rabinovich_3dj_02_230116 (1x)	Rabinovich_C2M_200G_Ortho_[19, 67, 93]mil_092122_Thru.s4p Rabinovich_C2M_200G_Ortho_135mil_011723_Thru.s4p	CONV PCB		
rabinovich_3df_02_2209 (3x) rabinovich_3dj_03_230116 (1x)	Rabinovich_C2M_200G_Paral_ <mark>[19, 67, 93]</mark> mil_092122_Thru.s4p Rabinovich_C2M_200G_Paral_135mil_011723_Thru.s4p	CONV PCB		
	TE_224G_C2M_Conventional_[5,7,13]inHst_100622_THRU.s4p	CONV PCB		
tracy_3df_02_2211	TE_224G_C2M_NCC_100622_THRU.s4p	NCC		
	TE_224G_C2M_CPC_CPB_091622_THRU_mod.s4p	CPC	Technology still stabilizing	
			(not included at this time)	

https://www.ieee802.org/3/df/public/tools/index.html

Expanded List of Channels <= 16 16 < X <= 28 > 28 Q3 Q1 Max Med 12.02 ERL 19.19 13.46 12.79 10.29

Challenge	Channel	IL (dB)	Fit IL (dB)	FOM_ILD (dB)	ERL (DER_0 = 1E-5)	ICN (mV)	ICR (dB)
Reflection	akinwale_3df_02_2209/C2M_PCB_93ohms_10dB	8.77	10.35	0.53	11.33	2.55	26.96
Reflection	ak Saved to U: Drive 2209/C2M_PCB_93ohms_11dB	9.61	11.22	0.52	11.56	2.32	27.72
Reflection	akmware_sur_uz_2209/C2M_PCB_93ohms_12dB	10.45	12.07	0.52	11.80	2.11	27.11
Reflection	akinwale_3df_02_2209/C2M_PCB_93ohms_13dB	11.31	12.92	0.52	12.02	1.93	27.58
Reflection	akinwale_3df_02_2209/C2M_PCB_93ohms_14dB	12.17	13.83	0.55	11.48	1.91	26.96
Reflection	akinwale_3df_02_2209/C2M_PCB_93ohms_15dB	13.03	14.67	0.56	11.68	1.76	27.07
Reflection	akinwale_3df_02_2209/C2M_PCB_93ohms_16dB	14.73	16.33	0.57	12.03	1.50	26.75
Reflection	akinwale_3df_02_2209/C2M_PCB_93ohms_17dB	15.55	17.16	0.58	12.18	1.40	26.63
	akinwale_3df_02_2209/C2M_PCB_93ohms_18dB	16.42	17.98	0.59	12.33	1.30	26.28
	akinwale_3df_02_2209/C2M_PCB_93ohms_19dB	17.24	18.80	0.60	12.46	1.22	26.20
	akinwale_3df_02_2209/C2M_PCB_93ohms_20dB	18.11	19.62	0.61	12.59	1.15	25.65
	akinwale_3df_02_2209/C2M_PCB_93ohms_21dB	19.80	21.25	0.64	12.80	1.04	24.85
	akinwale_3df_02_2209/C2M_PCB_93ohms_22dB	20.63	22.06	0.65	12.89	0.99	24.66
	akinwale_3df_02_2209/C2M_PCB_93ohms_23dB	21.49	22.87	0.66	12.98	0.95	23.87
	akinwale_3df_02_2209/C2M_PCB_93ohms_24dB	22.33	23.68	0.68	13.06	0.92	23.57
	akinwale_3df_02_2209/C2M_PCB_93ohms_25dB	24.02	25.29	0.70	13.21	0.86	22.29
	akinwale_3df_02_2209/C2M_PCB_93ohms_26dB	24.87	26.09	0.72	13.27	0.84	21.46
	akinwale_3df_02_2209/C2M_PCB_93ohms_27dB	25.71	26.89	0.73	13.33	0.83	20.89
	akinwale_3df_02_2209/C2M_PCB_93ohms_28dB	26.56	27.70	0.74	13.38	0.81	20.06
IL, Xtalk	akinwale_3df_02_2209/C2M_PCB_93ohms_29dB	28.25	29.30	0.76	13.49	0.79	18.57
IL, Xtalk	akinwale_3df_02_2209/C2M_PCB_93ohms_30dB	29.10	30.11	0.78	13.53	0.78	17.83
	Rabinovich_C2M_200G_Ortho_19mil_092122	12.38	13.57	0.70	18.06	1.79	28.68
	Rabinovich_C2M_200G_Ortho_67mil_092122	14.70	14.87	0.69	17.50	2.71	27.00
	Rabinovich_C2M_200G_Ortho_93mil_092122	14.17	14.81	0.95	15.36	2.83	24.90
Xtalk	Rabinovich_C2M_200G_Ortho_135mil_011723	13.35	14.99	0.96	15.20	3.39	22.24
	Rabinovich_C2M_200G_Paral_19mil_092122	12.27	13.16	0.47	18.30	2.35	26.93
	Rabinovich_C2M_200G_Paral_67mil_092122	13.32	13.91	0.50	17.90	2.87	26.79
Xtalk	Rabinovich_C2M_200G_Paral_93mil_092122	13.44	14.12	0.67	14.98	3.17	24.32
Xtalk	Rabinovich_C2M_200G_Paral_135mil_011723	12.93	14.44	0.49	15.51	3.78	22.23
	tracy_3df_02_2211_C2M_CONV_5p4dB_HOST	10.26	10.64	0.55	18.76	1.58	45.15
	tracy_3df_02_2211_C2M_CONV_7p6dB_HOST	12.36	12.79	0.56	18.94	1.24	46.47
	tracy_3df_02_2211_C2M_CONV_14dB_HOST	18.78	19.18	0.62	19.19	0.64	49.12
	tracy_3df_02_2211_C2M_NCC_HOST	10.43	11.09	0.41	15.27	2.28	28.52

- This presentation does not intend to propose any channel specifications •
- The relative ERL, ICN, and ICR are compared under largely channel commonality: ٠
 - **OSFP** connector (possibly from the same contributor)
 - Host type: CONV PCB (except one is NCC)

Package loss is ~7dB per 30mm, ~9dB total for 30mm+8mm. Source: https://www.ieee802.org/3/df/public/22 11/benartsi 3df 01a 2211.pdf MIN

Relative COM Comparison with Proposed Channels

- The assumed AUI C2M BER targets were 1E-5, 2E-5, 5E-5, 8E-5
 - Much less interest in 1E-4
- Of course, the reported COM results will change depending on the channel, Cd, Cp, host and module package trace lengths, reference receiver model architecture & settings, etc.
- One package scenario: 30mm + 8mm (~9 dB IL)

Straw Poll #1 and 2 -- directional

At this time, I prefer the 200 Gbps/lane AUI BER target option per brown_3dj_elec_01_230420 slide 18:

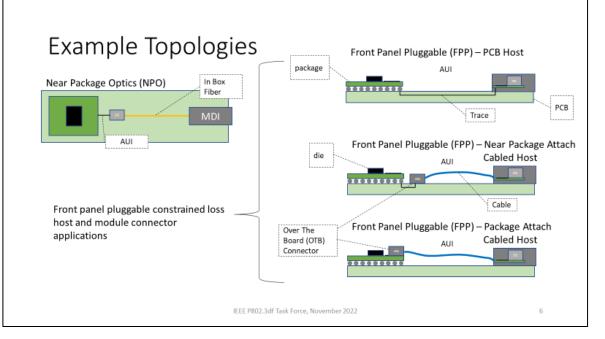
- a. Option A: C2M and C2C AUI BER 1E-5
- b. Option B: C2M and C2C AUI BER 2E-5
- c. Option C: C2M and C2C AUI BER 5E-5
- d. Option D: C2M and C2C AUI BER 1E-4
- e. Option E: C2M AUI BER 8E-5 and C2C AUI BER 2E-5 SP#1 Results (Chicago rules): A: 29 B: 19 C: 25 D: 8 E: 24 SP#2 Results (Choose one): A: 12 B: 4 C: 17 D: 0 E: 12 NMI: 11

https://www.ieee802.org/3/dj/public/adhoc/electrical/23_0420/straw_polls_3df_elec_adhoc_230420.pdf

A Relative Comparison

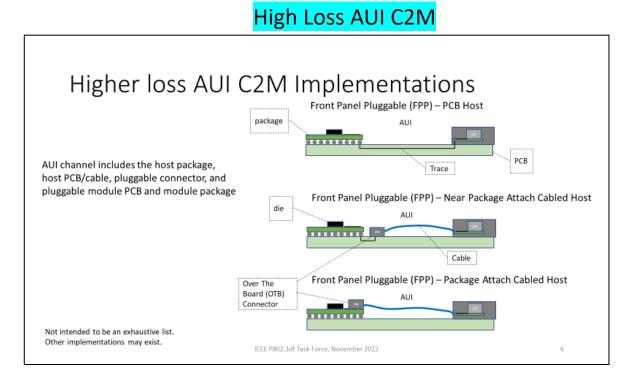
Fit IL (dB)	<= 16	16 < X <= 28	> 28		Max	Q3	Med	Q1	MIN
COM (dB)	>= 3.5	2.5 <= X < 3.5	< 2.5	ERL	19.19	13.46	12.79	12.02	10.29

Challenas	channel.				ERL			COM	(DER_0 = 1	E-5, 30mn	n/8mm)	COM (D	COM (DER_0 = 5E-5, 30mm/8mm)		n/8mm)	COM (DER_0 = 1	E-4, 30m	4, 30mm/8mm)		
Challenge	Channel	IL (dB)	FIT IL (OB)	FOM_ILD (dB)	(DER_0 = 1E-5)	ICN (mV)	іск (ав)	1	Ш	Ш	IV	1	П	Ш	IV	I	П	III	IV] _	
Reflection	akinwale_3df_02_2209/C2M_PCB_93ohms_10dB	8.77	10.35	0.53	11.33	2.55	26.96														Medium Loss AUI
Reflection	ak Saved to U: Drive 2209/C2M_PCB_93ohms_11dB	9.61	11.22	0.52	11.56	2.32	27.72														
Reflection	akmware_301_02_2209/C2M_PCB_93ohms_12dB	10.45	12.07	0.52	11.80	2.11	27.11														C2M Candidates
Reflection	akinwale_3df_02_2209/C2M_PCB_93ohms_13dB	11.31	12.92	0.52	12.02	1.93	27.58														
Reflection	akinwale_3df_02_2209/C2M_PCB_93ohms_14dB	12.17	13.83	0.55	11.48	1.91	26.96													ן ו	
Reflection	akinwale_3df_02_2209/C2M_PCB_93ohms_15dB	13.03	14.67	0.56	11.68	1.76	27.07													l T	
Reflection	akinwale_3df_02_2209/C2M_PCB_93ohms_16dB	14.73	16.33	0.57	12.03	1.50	26.75		_												These channels need
Reflection	akinwale_3df_02_2209/C2M_PCB_93ohms_17dB	15.55	17.16	0.58	12.18	1.40	26.63		_												These channels heed
	akinwale_3df_02_2209/C2M_PCB_93ohms_18dB	16.42	17.98	0.59	12.33	1.30	26.28		_												more equalization
	akinwale_3df_02_2209/C2M_PCB_93ohms_19dB	17.24	18.80	0.60	12.46	1.22	26.20		_												•
	akinwale_3df_02_2209/C2M_PCB_93ohms_20dB	18.11	19.62	0.61	12.59	1.15	25.65														(class III or better)
	akinwale_3df_02_2209/C2M_PCB_93ohms_21dB	19.80	21.25	0.64	12.80	1.04	24.85		_											Ì	
	akinwale_3df_02_2209/C2M_PCB_93ohms_22dB	20.63	22.06	0.65	12.89	0.99	24.66													- 1	than the others
	akinwale_3df_02_2209/C2M_PCB_93ohms_23dB	21.49	22.87	0.66	12.98	0.95	23.87													- 1	
	akinwale_3df_02_2209/C2M_PCB_93ohms_24dB	22.33	23.68	0.68	13.06	0.92	23.57													- 1	
	akinwale_3df_02_2209/C2M_PCB_93ohms_25dB	24.02	25.29	0.70	13.21	0.86	22.29													- 1	High Loss AUI
	akinwale_3df_02_2209/C2M_PCB_93ohms_26dB	24.87	26.09	0.72	13.27	0.84	21.46	<u> </u>	_											- 1	
	akinwale_3df_02_2209/C2M_PCB_93ohms_27dB	25.71	26.89	0.73	13.33	0.83	20.89		_											- 1	C2M Candidates
II. Marilla	akinwale_3df_02_2209/C2M_PCB_93ohms_28dB	26.56	27.70	0.74	13.38	0.81	20.06													- 1	
IL, Xtalk	akinwale_3df_02_2209/C2M_PCB_93ohms_29dB akinwale_3df_02_2209/C2M_PCB_93ohms_30dB	28.25	29.30 30.11	0.76	13.49 13.53	0.79	18.57													-	
IL, Xtalk	Rabinovich C2M 200G Ortho 19mil 092122	29.10 12.38	13.57	0.78	13.55	0.78	17.83		-												
	Rabinovich C2M 200G Ortho 67mil 092122	12.56	14.87	0.69	17.50	1.79 2.71	28.68 27.00	—												- 7	
	Rabinovich C2M 200G Ortho 93mil 092122	14.70	14.87	0.05	17.30	2.71	24.90													- 1	These channels
Xtalk	Rabinovich_C2M_200G_Ortho_55min_052122	13.35	14.99	0.96	15.20	3.39	22.24													- 1	
Aturk	Rabinovich_C2M_200G_Paral_19mil_092122	12.27	13.16	0.30	18.30	2.35	26.93		-											- 1	could work with a
	Rabinovich C2M 200G Paral 67mil 092122	13.32	13.91	0.50	17.90	2.35	26.79	—												i i	
Xtalk	Rabinovich C2M 200G Paral 93mil 092122	13.44	14.12	0.67	14.98	3.17	24.32														Medium complexity
Xtalk	Rabinovich C2M 200G Paral 135mil 011723	12.93	14.44	0.49	15.51	3.78	22.23														
	tracy 3df 02 2211 C2M CONV 5p4dB HOST	10.26	10.64	0.55	18.76	1.58	45.15														Equalizer (class I-II)
	tracy 3df 02 2211 C2M CONV 7p6dB HOST	12.36	12.79	0.56	18.94	1.24	46.47														· · ·
	tracy_3df_02_2211_C2M_CONV_14dB_HOST	18.78	19.18	0.62	19.19	0.64	49.12														
	tracy_3df_02_2211_C2M_NCC_HOST	10.43	11.09	0.41	15.27	2.28	28.52														Medium Loss AUI
-		-	1						-										,	-	


- This presentation does not intend to propose any channel specifications
- The relative ERL, ICN, and ICR are compared under largely channel commonality:
 - OSFP connector (possibly from the same contributor)
 - Host type: CONV PCB (except one is NCC)

Package loss is ~7dB per 30mm, ~9dB total for 30mm+8mm. Source: https://www.ieee802.org/3/df/public/22_11/benartsi_3df_01a_2211.pdf

C2M Candidates


AUI C2M Loss Reminder

Medium Loss AUI C2M

- Targets ~22 dB IL die-die
- NPO and constrained loss FPP
- The COM reference transmitter and receiver models and parameters are an evolution from 3ck, scaled to the higher signaling rate

https://www.ieee802.org/3/df/public/22_11/lusted_3df_03a_2211.pdf

- Targets ~36 dB IL die-die
- Primarily FPP
- Reference receiver and transmitter models leveraged from 3ck backplane and copper cable, scaled appropriately

https://www.ieee802.org/3/df/public/22_11/lusted_3df_02_2211.pdf

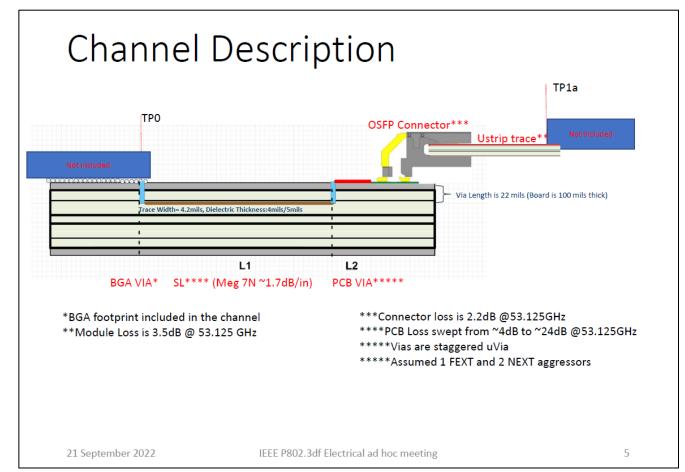
Summary

- Established several "classes" of reference equalizers for relative comparison purposes
 - "Mild" (Class I) to "spicy" (Class IV)
- Selectively reduced the number of AUI C2M channels for analysis in order to focus baseline proposal development efforts
- Provided a relative comparison using COM with these reduced channels
 - Some channels work with medium complexity equalization assumed for medium loss AUI C2M
 - Almost all channels work with higher complexity equalization assumed for high loss AUI C2M
- Next step is to recommend a pass/fail grading for the reduced channels, by AUI C2M loss category
 - Plan to have initial grading for the May 2023 interim meeting
 - Please reach out to us to get involved in the proposed grading

Thanks!

BACKUP

COM Reference Sheets for Class I/II/III/VI

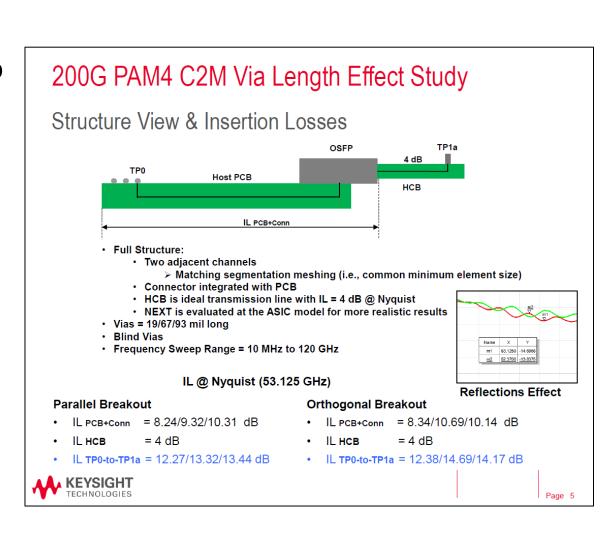

	Table 93A-1 parameters		I/	O control			Table 93A-3 parameters						
Parameter	Setting	Units	Information	1	DIAGNOSTICS	0	logical		Parameter	Setting	Units		
f_b	106.25	GBd		1	DISPLAY_WINDOW	0	logical		package_tl_gamma0_a1_a2	[0 0.0008455 0.000340225]			
f_min	0.05	GHz		1	CSV_REPORT	0	logical		package_tl_tau	0.00644805	ns/mm		
 Delta_f	0.01	GHz		1	RESULT_DIR	.\results\CAKB_{date}\			package_Z_c	[92 92 ; 70 70; 80 80; 100 100]	Ohm		
C d	[0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4]	nF	[TX RX]	1	SAVE FIGURES	0	logical						
L_s	[0.13 0.15 0.14; 0.13 0.15 0.14]	nH	[TX RX]	1	Port Order	[1324]			Parameter	Setting			
C_b	[0.3e-4 0.3e-4]	nF	[TX RX]	1	RUNTAG	CAKR_RCos_eval_			board_tl_gamma0_a1_a2	[0 6.44084e-4 3.6036e-05]	1.5 db/in @ 56G		
z_p select	[12]		[test cases to run]	1	COM_CONTRIBUTION	0	logical		board_tl_tau	5.790E-03	ns/mm		
z_p (TX)	[15 30; 1 1 ; 1 1 ; 0.5 0.5]	mm	[test cases]	1	Operati	onal			board_Z_c	100	Ohm		
z_p (NEXT)	[8 8; 0 0 ; 0 0 ; 0 0]	mm	[test cases]	1	ERL Pass threshold	10	dB		z_bp (TX)	125	mm		
z_p (FEXT)	[15 30; 1 1 ; 1 1 ; 0.5 0.5]	mm	[test cases]	1	COM Pass threshold	3	db		z_bp(NEXT)	0	mm		
z_p (RX)	[8 8; 0 0 ; 0 0 ; 0 0]	mm	[test cases]	1	DER_0	1.00E-04			z_bp (FEXT)	125	mm		
PKG_Tx_FFE_preset	0			1	T_r	3.75E-03	ns		z_bp (RX)	0	mm		
C_p	[0.5e-4 0.5e-4]	nE	[TX RX]	1	FORCE_TR	1	logical		C_0	[0.2e-4 0]	ŋF		
R_0	50	Ohm		1	PMD_type	C2C			C_1	[0.2e-4 0]	nF		
R_d	[50 50]	Ohm	[TX RX]	1 .	EW	1			Include PCB	0	logical		
A_v	0.413	V	vp/vf=	*	TDR and ER	, options	logical						
A_fe	0.413	V	vp/vf=	1	TDR	1	logical						
A_ne	0.45	V		1	ERL	1	logical		Seletions	(rectangle, gaussian, dual_ray leigh, triangle			
L	4			1	ERL_ONLY	0	ns		Histogram_Window_Weight	gaussian	selection		
M	32			1	TR_TDR	0.01			Qr	0.02	<u>ų</u>		
	filter and Eg				N	800	logical						
f_r	0.75	*fb		1	TDR_Butterworth	1							
c(0)	0.54		min	1	beta_x	0		*					
c(-1)	[-0.34:0.02:0]		[min:step:max]	1	rho_x	0.618			f_v	0.594	Fb		
c(-2)	[0:.02:0.12]		[min:step:max]	1	TDR_W_TXPKG	0	<u>y</u> ı		f_f	0.594	Fb		
c(-3)	[-0.06:.02:0]		[min:step:max]	1	N_bx	8			f_n	0.594	Fb		
c(-4)	[0:.02:0.04]		[min:step:max]	1	fixture delay time	[00]			f_2	79.688	GHz		
c(1)	[-0.12:0.02:0.1]		[min:step:max]	1	Tukey_Window	1			A_ft	0.450	V		
N_b	24	U		1	Noise, j	itter	U U		A_nt	0.450	V		
b_max(1)	0.85		As/dffe1		sigm a_RJ	0.01	<u> </u>						
b_max(2N_b)	[0.5 0.3 0.3 0.2*ones(1,20)]		As/dfe2N_b	Ĩ	A_DD	0.02	V^2/GHz			Floating Tap Control			
b_min(1)	0.3		As/dffe1	1	eta_0	4.10E-09	dB		N_bg	6	0 1 2 or 3 groups		
b_min(2N_b)	[0.2 0.05 0.05 -0.05*ones(1,20)]		As/dfe2N_b		SNR_TX	33			N_bf	3	taps per group		
g_DC	[-20:1:0]	dB	[min:step:max]	1	R_LM	0.95			N_f	80	UI span for floating taps		
f_z	42.5	GHz		1					bmaxg	0.2	max DFE value for floati		
f_p1	42.5	GHz			Enforce Causality	1							
f_p2	106.25	GHz			S-parameter magnitude extrap	trend_to_DC							
g_DC_HP	[-6:1:0]		[min:step:max]										
f_HP_PZ	1.328125	GHz			MLSE	1	logical			Receiver testing			
Butterworth	1	logical	include in fr						RX_CALIBRATION	0	logical		
Raised Cosine	0	logical	include in fr	1					Sigma BBN step	5.00E-03	V		

*ERL and ICN parameters

** Make changes of Class I/II/III/VI based on parameters listed in slide 6

C2M Channel Summaries (1/3)

- TP0 to TP1a IL range from 10.35dB to 29.56dB in two different model variants
 - Host PCB length
 - Host PCB impedance



Contribution: <u>akinwale_3df_elec_01_220921</u> Channel: <u>akinwale_3df_01_2209</u>, <u>akinwale_3df_02_2209</u>, <u>akinwale_3df_03_2209</u>

C2M Channel Summaries (2/3)

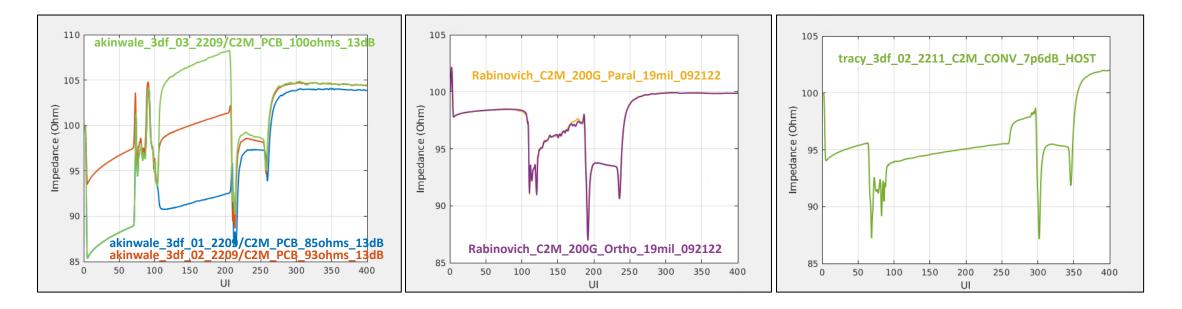
- TPO to TP1a IL range from 10.64dB to 14.99dB in two different model variants
 - ASIC breakout topology
 - Via length

Contribution: rabinovich_3df_elec_01b_220921, rabinovich_3dj_01_230116 Channel: rabinovich_3df_01_2209, rabinovich_3df_02_2209, rabinovich_3dj_02_230116, rabinovich_3dj_03_230116

C2M Channel Summaries (3/3)

- TP0 to TP1a IL range from 7.54dB to 19.18dB in two different model variants
 - Host type
 - Host PCB length

Contribution: tracy_3df_02_2211 Channel: tracy_3df_02_2211_sparameters


Description

- Simulation for 200G chip to module channels using concept connector with various host architecture options
- Includes BGA escape model provided by Regee Petaja of Broadcom
- Does NOT include silicon package
- · Current view of Chip to Module performance in various host implementations
- What this presentation is NOT:
 - Modulation proposal
 - Channel or host loss proposal
- Compliance board proposal
- A specific host architecture proposal;
 - · comparative performance options are presented, i.e., traces vs. cabled host to "near ASIC" vs. co-package copper
- Asymmetric architectures (managed deployment)

Coarse Selection via Impedance Corner

- TP1a-die (host) TDR
 - Impedance mismatch among MCB-Conn-HCB in akinwale_3df_01_2209 (850hm) and akinwale_3df_03_2209 (1000hm) are greater than 10%

Two AUI C2M Host Losses

Straw Poll #1

For the front panel pluggable use case, I am interested in 200 Gbps/lane AUI C2M specifications for:

- A. medium loss only (e.g. up to ~22 dB IL die-die per lusted_3df_01_220927)
- в. higher loss only (e.g. up to ~36 dB IL die-die per lusted_3df_01_220927)
- c. both medium and higher loss
- D. need more information

pick one

Results: A: 17, B: 11, C: 49, D: 12

https://www.ieee802.org/3/df/public/22 10/motions 3df 221004.pdf