COM update 4.1

Richard Mellitz, Samtec Brandon Gore, Samtec Adam Gregory, Samtec Kent Lusted, Intel

August 17, 2023

Contributors

□ Adee Ran, Cisco

Background

COM direction on RXFFE clarified in July 2023

Straw Poll #1

I would support the direction of the RXFFE changes to Annex 93A (COM) in mellitz_3dj_01a_2307 slides 6, 7, and 8 Results (all): Y: 61, N: 0, NMI: 7, A: 19

Straw Poll #9

I would support the direction of a RXFFE based reference RX to the 200G/lane AUI C2M and AUI C2C

Results (all): Y: 61, N: 0, NMI: 10, A: 26

https://www.ieee802.org/3/dj/public/23_07/motions_3cwdfdj_2307.pdf

Progress Report

Key Changes for Rx_{FFE} in Annex 93A (COM)

- □ Consider an update to the COM reference model, figure 93A-1
 - See slide 6
- \square Provide for implementation noise, η_1
- □ Include another term, $H_{rxffe}(f)$, the receiver FFE response, into the voltage transfer function, $H^{(k)}(f)$
 - $H^{(k)}(f) = Hffe(f) H_t(f) H_{21}^{(k)}(f) Hr(f) Hctf(f) H_{rxffe}(f)$
- Provide a receiver equalizer description like the transmitter equalizer in sub-section 93A.1.4.2.
- Reuse the specified COM FOM for the determination of the variable equalizer parameters settings

https://www.ieee802.org/3/dj/public/23_07/mellitz_3dj_01a_2307.pdf

COM 4.1 Update Agenda

For .3dj project work

- □ Changes from COM 4.0
- Block Diagram
- □ COM flow
- □ COM Keyword update
- \Box Tx anchor for Rx_{FFE}
- \Box Rx_{ffe} determination

Changes from 4.0 \rightarrow 4.1

- 1. Rx_{ffe} suggested in mellitz_3dj_01a_0723
 - a) COM 4.0 and earlier used first zero crossing to reference T_s one UI later for Rx_{ffe} tap determination
- feature

- a) After determination, Mueller-Muller (MM) is used for T_s
- b) COM 4.1 determines initial T_s anchor uses pulse response (PR) peak for Rx_{FFE} tap determination
 - a) The oversampled offset away form the anchor is determined using in the specified over sampled range.
 - b) Ts is determined for the best FOM of all specified oversamples in combination with all CTF and Tx FFE combinations.
- 2. PDF & CDF correction as suggested in kirkland_3dj_elec_01_230406
 - a) Tends to offset the COM impact when sample adjustment is set to 0 in 1b
- 3. Renormalize inputted s-parameters. 50 ohms reference no longer required.
- 4. Removed RL data from reports unless bread_crumbs is set (memory saving)
- 5. S21.^2 changed to s12.*s21 in s21_pkg. Corrected VTF needed for non-passive s-parameters

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force

Bug

feature

Bug

Bug

COM reference model proposal

WITH RX FFE

Rx_{FFE} is within the Full Grid Optimization Loop and includes T_s sweep

Added COM parameter	Example value	Default	information	notes
sample_adjustment	[-32 32]	0	Min max sample offset range from ts anchor	Integer related to M
ts_anchor	1	0	Ts anchor for sample adjustment (0,1)	See next slides

Full grid loop hierarchy

- 1. CTF
 - for each G_{DC} and G_{DC2}

2. Tx_{ffe}

- for each C(n)
- 3. For RxFFE only (new for COM 4.1)

Determine T_s (like a CDR)

- Initial T_s anchor uses Mueller-Muller (MM), PR peak, or max dv/UI and then continue for each oversample step in "sample_adjustment"
- If sample_adjustment= 0 then only MM is used for T_s and thus Rx_{ffe}
- Sample adjustment
- Find Rx_{FFE} taps C_{rx}(n) and apply
- 4. For Rx_{FFE} with sample_adjustment=0 or no Rx_{FFE}
 - T_s is determined from Mueller-Muller (MM), equation 93A–25
- 5. Compute FOM for steps [1 2 3 4]
- 6. Determine variable equalizer settings for best FOM

COM 4.1 Configuration Keyword Update

ADDED, REVISED, AND RETIRED

Added COM parameter	Example value	Default	information	notes
sample_adjustment	[-32 32]	0	Min max sample offset range from ts anchor	Integer related to M
ts_anchor	1	0	Ts anchor for sample adjustment (0,1)	See next slides

Revised COM parameter	Example value	Default	information	notes
Local Search	2	0	Distance length for coordinate decent	Sample_adjustment
			0 disables	incorporated for COM 4.1
ffe_main_cursor_min	1		Minimum value for the $C_{1}(0)$	All taps are normalized
				such that C _{rx} (0)=1
ffe_pre_tap_len	5	0	Number of pre taps	if both are 0, Rx_FFE and
ffe_post_tap_len	24	0	Number of post taps	eta1 is not used
ffe_pre_tap1_max	1	1	Maximum value for C_RX(1)	
ffe_post_tap1_max	1	1	Maximum value for C_RX(-1)	
ffe_tapn_max	1	1	Maximum value of all other taps	
ffe_tap_step_size		0	Step size (normalized)	May be revisited

Retired COM parameters	Default	information	Notes. Defaulted in COM script
ffe_backoff	0		

For each Tx_{ffe} and CTF setting

STEPS 1 AND 2

COM 4.1 T_s over sample sweep

*TS_ANCHOR = 1 FOR RX_{FFE}

Rx FFE Determination

mellitz_3ck_adhoc_01a_100318 (COM 2.51 with RX_{FFE} updates)

- Rx FFE tap determination is within the inner loop for the Tx, CTF, and T_s sweeps
- More information on the vector forcing algorithm is per <u>mellitz 3ck adhoc 01a 100318.pdf</u>

□ Rx FFE taps, C_{rx}, is a least squares solution for the following equation

- $\overline{FV} = [HH]\overline{C_{Rx}}$, where
 - HH the convolution matrix derived from the sampled pulse response
 - FV is a forcing vector zero everywhere except
 - FV(0) corresponds to the sample point
 - FV(1) is set to the pre-RX_{FFE} postcursor DFE value (up to b_{max}(1)).
- Solve for C_{RX}

•
$$C_{RX} = \left(\left((HH^T \ HH) \right)^{-1} HH^T \right)^T FV^T$$

• A partial response is embodied in the forcing vector FV

Next Steps

Determine what is good enough for 200 Gbps PAM4 COM?

- Test COM 4.1 more broadly across industry with provided channels and investigate reference EQ needs for baseline proposals
- □ Refine COM 4.1 as needed for RXFFE functionality and accuracy
- □ Expand COM for MLSE feature (CR/KR applications)

Thank You!

back up slides – extra information

Determining FFE taps, C within the inside loop

FROM: MELLITZ_3CK_ADHOC_01A_100318.PDF SLIDE 9

$\Box C = ((HH^{T} * HH^{-1} * HH^{T})^{T} * FV^{T}$

- C are the Rx FFE taps
- HH is derived from $h^{(0)}(t)$
- HH is shifted sampled ISI matrix
- $\hfill\square$ FV is the forcing vector ,
- $\Box FV = [... 0, 0, FV0, FV1, 0, 0, 0, 0...]$
- □ FV for the cursor tap is
 - FV0= $h^{(0)}(t_s)$
 - This forces the cursor tap to 1
- Modified from mellitz_3ck_01_0718: FV for the post cursor tap (2.51 update)
 - $FV1 = sign(h^{(0)}(t_s + T_b)) min(|h^{(0)}(t_s + T_b))|, |b_1 h^{(0)}(t_s)|)$
 - This makes sure the b₁ is not violated for the DFE
- \Box $h_{fferx}(f)$ is computed from the C found as in eq 93A-21

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force