RX FFE Implementation Algorithm for COM 4.1

Richard Mellitz, Samtec Kent Lusted, Intel

August 31, 2023

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force

□ Explain the COM 4.1 Rx FFE determination algorithm

Review from COM 4.1 Update

mellitz_3dj_01a_elec_230817

Rx_{FFE} is within the Full Grid Optimization Loop and includes T_s sweep

Added COM parameter	Example value	Default	information	notes
sample_adjustment	[-32 32]	0	Min max sample offset range from ts anchor	Integer related to M
ts_anchor	1	0	Ts anchor for sample adjustment (0,1)	See next slides

Full grid loop hierarchy

- for each G_{DC} and G_{DC2}
- 2. Tx_{ffe}
 - for each C(n)
- 3. For RxFFE only (new for COM 4.1)

Determine T_s (like a CDR)

- Initial T, anchor uses Mueller-Muller (MM), PR peak, or max dv/UI and then continue for each oversample step in "sample_adjustment"
- If sample_adjustment=0 then only MM is used for T, and thus Rx_{file}
- Sample adjustment
- Find Rx_{FFE} taps C_{rx}(n) and apply
- 4. For Rx_{FFE} with sample_adjustment=0 or no Rx_{FFE}
 - * T_s is determined from Mueller-Muller (MM), equation 93A–25
- 5. Compute FOM for steps [1 2 3 4]
- 6. Determine variable equalizer settings for best FOM

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force

Rx FFE taps setting are determined in the inner most loop

^{1.} CTF

Inner Most Loop: Rx Feed Forward Equalizer (Rx_{FFE}) Determination Algorithm

- Rx_{FFE} settings are computed for each Tx, CTF, and sample point setting
 - These are called variable equalizer parameters (93A.1.6)

□ A figure of merit (FOM) is used to select the best combination of settings

• The FOM is a signal to noise ratio (IEEE802.3 Eq 93A-3)

•
$$FOM = 10 \log 10 \left(\frac{A_s^2}{\sigma_{TX}^2 + \sigma_{ISI}^2 + \sigma_J^2 + \sigma_{XT}^2 + \sigma_N^2} \right)$$

• The last step of the inner most loop is to determine FOM

Rx Feed Forward Equalizer (FFE) Determination

- The Rx FFE is implemented in COM 4.1 is a least means squares (LMS) method
- □ The mechanics of the LMS method uses a desired response or forcing vector (FV) derived from the pulse response based on the following
 - $FV = PR \otimes C$ Where C is a vector of Rx FFE tap coefficients and PR is the pulse response.
 - C is solved for in each loop
 - Vector forcing is adjusted for DFE
 - The LMS method can comprehend noise for determination of C but further discussion is needed
 - Consider the noise power is related to $\sigma_{TX}^2 + \sigma_{ISI}^2 + \sigma_J^2 + \sigma_{XT}^2 + \sigma_N^2 \dots$

The inner loop starts with a pulse response (PR)

FOR EACH TX_{FFE} AND CTF SETTING

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force

Vector Forcing Algorithm Description

Example: cmx=2 and cpx=3

- □ The algothim starts with a PR
- □ The result is a set of Rx_{FFE} tap coefficients, C
- □ V is the sub sampled PR

- □ V vector of UI spaced samples referenced to the sample point, T_s , between cmx and cpx
 - Where cmx and cpx are respectively the number of pre and post tap
 - In this example the PR voltage at T_s is called "cur" or cursor

Forcing vector FV

DESIRED RESPONSE IS 0 V EVERYWHERE EXCEPT AT THE CURSOR AND POST CURSOR

v6 in not allowed to be more the $b_{max}(1)$

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force

Set up the matrix VV

USING THE PRIOR EXAMPLE WHERE CMX=2 AND CPX=3

IEEE P802.3df 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force

Determine Rx_{FFE} taps

SOLVE FOR C

- \Box The solution for C from $\overline{FV} = [VV]\overline{C}$ is an LMS fit
- \square C becomes the $Rx_{\rm FFE}$ coefficients used in the inner loop
 - $\bar{C} = (([VV]^T [VV])^{-1} [VV]^T)^T FV^T$
 - C is normalized such that C(0)=1
 - C = C/C(0)

COM is Computed as before

AFTER ALL THE VARIABLE EQUALIZER SETTING ARE APPLIED

- Except that Rx_{FFE} has been added to the frequency domain filtering for crosstalk and through channels.
- □ ISI and crosstalk frequency domain responses are converted to time domain and then to the statistical domain (¹PDF).
- □ Other noise PDFs from eta_0, jitter, and SNR_Tx are computed
- □ The COM script proceeds to combine all the noise PDFs and determines total noise PDF which is converter to a noise ²CDF
- The total noise CDF and the available signal (A_s) are used to determine COM at DER0

¹PDF probability density function ²CDF cumulate distribution function

Next steps

Consensus discussion on merits and methods for including noise in the Rx determination step

• Maybe VV= VV + randn(rank(VV))*noise

Investigate/review modifications to VV to reduce the likelihood of ill condition matrix operations

Thank You!

IEEE P802.3dj Ethernet Task Force