Reference receiver framework for 200G/lane electrical interfaces and PHYs

Adam Healey, Raj Hegde Broadcom Inc. IEEE P802.3dj Electrical Ad Hoc 11 January 2024 (r2)

Acknowledgement

• Thanks to Bill Kirkland and Rich Mellitz for discussions on this topic

Background

- Recent calculations of Channel Operating Margin (COM) have included a feed-forward equalizer (FFE) and 1-tap decision feedback equalizer (DFE) in the reference receiver
- However, this structure has not been formally adopted
- The method used to optimize the reference receiver equalizer coefficients and sampling time has been a topic of discussion
- It would be beneficial to formally select the reference receiver structure including the method of optimization
- This would provide a solid platform for the evaluation of COM parameters and the selection of parameter values for a baseline proposal
- This presentation proposes a method of optimization that shows benefits over currently employed techniques

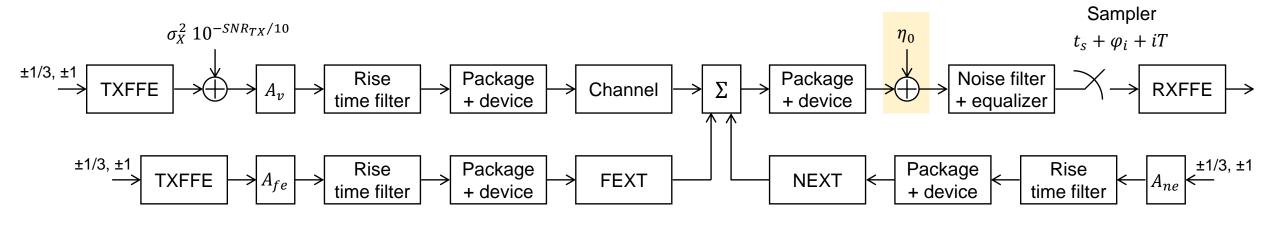
Proposal

- Formalize that the reference receiver is a feed-forward equalizer with a 1-tap decision feedback equalizer
- Optimize equalizer coefficients using the minimum mean-squared error (MMSE) criterion
- This is a well-documented and well-analyzed method of optimization
- See Appendix A for the derivation of equations used in this contribution
- MMSE optimization uses knowledge of the noise at the receiver input
- This requires calculation of the noise autocorrelation function but this is readily done using intermediate results of the existing COM calculation
- Compute a figure of merit (FOM) based on MMSE optimization results
- Choose the sampling time that maximizes this figure of merit (FOM)

Noise autocorrelation function

- The sources of noise considered in the calculation of COM are...
 - Receiver input-referred noise
 - Crosstalk
 - Transmitter output noise
 - Noise resulting from transmitter jitter
- A power spectral density can be defined for each source of noise
- Derive the noise autocorrelation function from the inverse Fourier transform of the sum of the noise power spectral densities

Receiver noise power spectral density



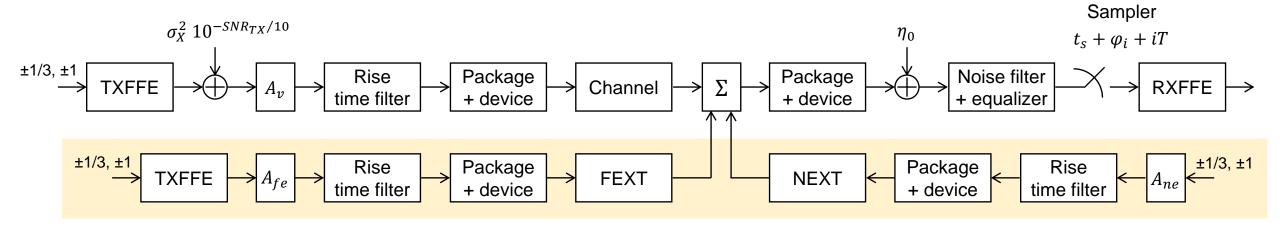
Given the transfer function of the receiver noise filter $H_r(f)$, the transfer function of the continuous-time equalizer $H_{ctf}(f)$, and one-sided power spectral density η_0 (converted to units V²/Hz) ...

$$\tilde{S}_{rn}(f) = \frac{\eta_0}{2} \left| H_r(f) H_{ctf}(f) \right|^2$$
 is the receiver power spectral density at sampler input

$$S_{rn}(\theta) = \sum_{m} \tilde{S}_{rn} \left(\frac{\theta + 2\pi m}{2\pi T} \right) - \pi < \theta \le \pi$$

is the folded power spectral density corresponding to the sampled noise at the RXFFE input where $T=1/f_b$ is the unit interval

Crosstalk power spectral density



Given the signal power $\sigma_X^2 = \frac{L^2 - 1}{3(L - 1)^2}$ where L is the number of signal levels and ...

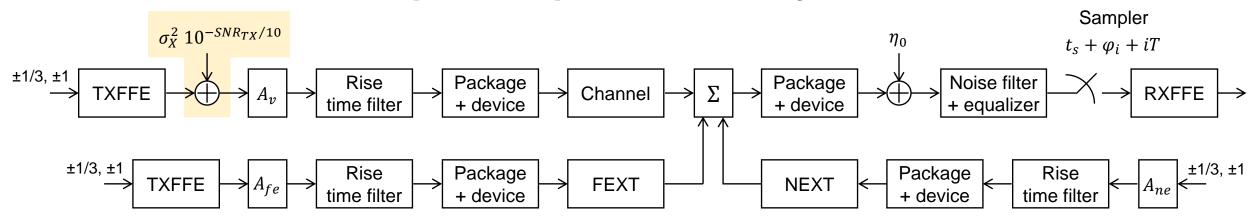
... given the pulse response for k^{th} crosstalk aggressor $h^{(k)}(t)$

$$h_{\chi n}^{(k)}(i) = h^{(k)}\left(\frac{m+iM}{Mf_b}\right)$$
 where M is the number of samples per unit interval

Note that m is chosen to maximize $\sum_{i} \left[h_{xn}^{(k)}(i) \right]^2$

$$S_{\chi n}^{(k)}(\theta) = \sigma_X^2 \left| \mathcal{F}\left\{h_{\chi n}^{(k)}(i)\right\} \right|^2/f_b$$
 is the power spectral density of the k^{th} crosstalk aggressor at the RXFFE input where $\mathcal{F}\{x\}$ is the Fourier Transform of x

Transmitter noise power spectral density



Given the transmitter signal-to-noise ratio SNR_{TX} , the transfer function of the rise time filter $H_t(f)$, and the voltage transfer function of the victim signal path $H_{21}^{(0)}(f)$, ...

$$H_{tn}(f) = H_t(f)H_{21}^{(0)}(f)H_r(f)H_{ctf}(f)$$

$$\tilde{h}_{tn}(t) = \mathcal{F}^{-1}\{A_vT\operatorname{sinc}(fT)H_{tn}(f)\}$$

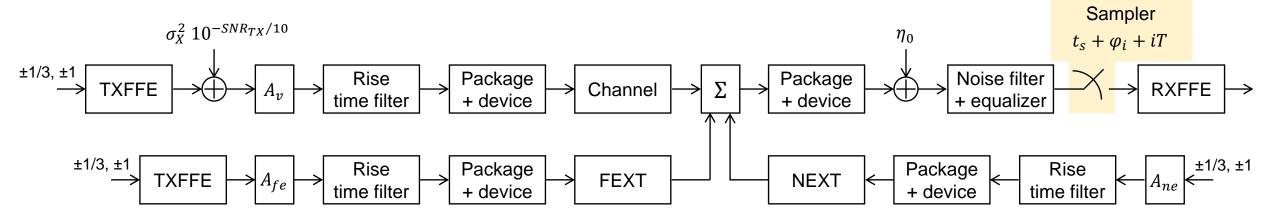
is the pulse response of the victim signal path <u>excluding</u> the TXFFE response

$$h_{tn}(i) = \tilde{h}_{tn}(t_s + iT)$$

$$S_{tn}(\theta) = \sigma_X^2 10^{-SNR_{TX}/10} |\mathcal{F}\{h_{tn}(i)\}|^2 / f_b$$

is the power spectral density of the transmitter noise at the RXFFE input

Power spectral density of noise due to jitter

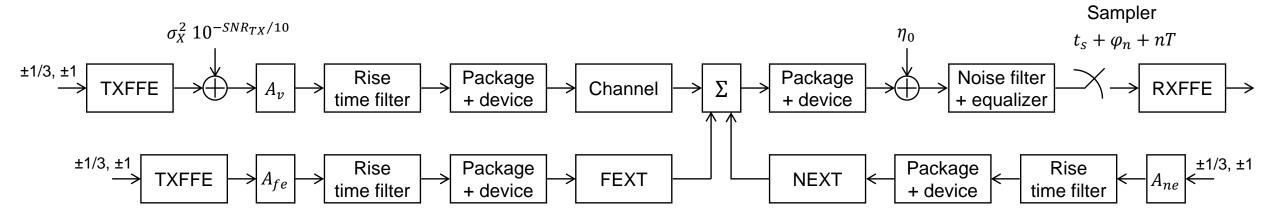


Given the peak Dual-Dirac jitter A_{DD} , the RMS random jitter σ_{RJ} , and $h_J(i)$ which is the slope of victim signal path pulse response around the sampled values ...

$$S_{jn}(\theta) = \sigma_X^2 (A_{DD}^2 + \sigma_X^2) \left| \mathcal{F} \left\{ h_J(i) \right\} \right|^2 / f_b$$

is the power spectral density of the noise due to jitter as observed at the RXFFE input

Noise autocorrelation function definition



$$S_n(\theta) = S_{rn}(\theta) + \sum_{k=1}^{K-1} S_{xn}^{(k)}(\theta) + S_{tn}(\theta) + S_{jn}(\theta)$$
 is the power spectral density of the total (sampled) noise at the RXFFE input

 $R_n(i) = \mathcal{F}^{-1}\{S_n(\theta)\} f_b$ is the noise autocorrelation at the RXFFE input

 R_{nn} is the noise autocorrelation matrix which is a diagonal-constant (Toeplitz) matrix whose first row and column are $R_n(i)$ for i = 0 to $N_w - 1$ where N_w is the number of feed-forward filter taps

Proposed coefficient optimization procedure

- Given the pulse response for the victim signal path $h^{(0)}(t)$ and the sampling time t_s , ...
- Define h to be the vector $[h_{-d_h}, ..., h_0, ..., h_{N-d_h-1}]$ where h_m is $h^{(0)}(t_s + mT)$
- Define the delay d to be $d_h + d_w$ where d_w is the feed-forward filter delay (equal to the number of pre-cursor taps)
- Define H to be a constant-diagonal (Toeplitz) matrix whose first column is h followed by $N_w 1$ zeros whose first row is h_{-d_h} followed by $N_w - 1$ zeros
- Define h_0 to be row d+1 from H
- Define H_b to be rows d+2 to $d+N_b+1$ from H (N_b is the feedback filter length)
- Define **R** to be $H^TH + R_{nn}/\sigma_X^2$ where R_{nn} is the previously defined noise autocorrelation matrix, σ_X^2 is the signal power, and a T exponent denotes the matrix transpose
- Solve the following matrix equation (ignoring the resulting value of λ)

$$\begin{bmatrix} \boldsymbol{w} \\ \boldsymbol{b} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \boldsymbol{R} & -\boldsymbol{H}_b^T & -\boldsymbol{h}_0^T \\ -\boldsymbol{H}_b & \boldsymbol{I}_b & \boldsymbol{z}_b^T \\ \boldsymbol{h}_0 & \boldsymbol{z}_b & 0 \end{bmatrix}^{-1} \begin{bmatrix} \boldsymbol{h}_0^T \\ \boldsymbol{z}_b^T \\ 1 \end{bmatrix} \quad \text{where } \boldsymbol{I}_b \text{ is the } N_b \times N_b \text{ identity matrix and } \boldsymbol{z}_b \text{ is a row vector of } N_b \text{ zeros}$$

Proposed coefficient optimization procedure, continued

- Apply specified minimum and maximum limits to $m{b}$ to yield $m{b}_{lim}$
- If b_{lim} is not equal to b, then solve the following matrix equation to update w

$$\begin{bmatrix} \boldsymbol{w} \\ \lambda \end{bmatrix} = \begin{bmatrix} \boldsymbol{R} & -\boldsymbol{h}_0^T \\ \boldsymbol{h}_0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \boldsymbol{h}_0^T + \boldsymbol{H}_b^T \boldsymbol{b}_{lim} \\ 1 \end{bmatrix}$$
 (again ignoring λ)

- Apply specified minimum and maximum limits to w to yield w_{lim}
- If w_{lim} is not equal to w, then ...
 - Normalize w_{lim} by $h_0^T w_{lim}$ so that the amplitude of the equalized pulse is 1
 - Update $\boldsymbol{b} = \boldsymbol{H}_b^T \boldsymbol{w}_{lim}$
 - Apply specified minimum and maximum limits to \boldsymbol{b} to yield \boldsymbol{b}_{lim}
- Compute the mean-squared error

$$\sigma_e^2 = \sigma_X^2 (\boldsymbol{w}_{lim}^T \boldsymbol{R} \, \boldsymbol{w}_{lim} + 1 + \boldsymbol{b}_{lim}^T \boldsymbol{b}_{lim} - 2 \boldsymbol{w}_{lim}^T \boldsymbol{h}_0^T - 2 \boldsymbol{w}_{lim}^T \boldsymbol{H}_b^T \boldsymbol{b}_{lim})$$

Compute the figure of merit (FOM)

$$FOM = 20log_{10} \left(\frac{R_{LM}/(L-1)}{\sigma_e} \right)$$
 where R_{LM} is the specified level separation mismatch ratio (note that the amplitude of the equalized pulse is 1)

Proposed sampling time optimization procedure

- Find the value of t_s that maximizes FOM
- Search algorithm does not need to be defined; any method that yields the correct answer (maximum FOM) should be allowed
- Constraints on the search range and allowances for t_s granularity can be considered

Additional considerations

- Given the FOM-optimized sampling phase and equalizer coefficients, it is straightforward apply the feed-forward equalizer transfer function to the time-domain responses and calculate the probability density functions for the noise and interference at the equalizer output
- If needed, these steps can be defined in detail in a future contribution

Impact of the proposed optimization method

- Channel Operating Margin (COM) is computed using MMSE optimization
- Results are compared to COM computed using the algorithm described in mellitz_3dj_elec_01_230831 (hereafter referred to as the force algorithm)
- The same configuration is used to generate both sets of results for applesto-apples comparisons

Test case definition

KR channel source files	Number of cases
shanbhag 3dj 02 2305	4
weaver_3dj_02_2305	36
weaver_3dj_elec_01_230622	4
mellitz_3dj_02_elec_230504	27
mellitz_3dj_03_elec_230504	25
akinwale_3dj_01_2310	7
Total	103

CR channel source files	Number of cases
shanbhag_3dj_01_2305	6
kocsis 3dj 02 2305	5
lim_3dj_03_230629	1
lim 3dj 04 230629	1
lim_3dj_07_2309	1
akinwale_3dj_02_2311	4
weaver 3dj 02 2311	12
Total	30

Package class A

Parameter	Setting	Units	Information
package_tl_gamma0_a1_a2	[5e-4 8.9e-4 2e-4]		
package_tl_tau	0.006141	ns/mm	
package_Z_c	[87.5 87.5 ; 92.5 92.5]	Ohm	
z_p select	1		
z_p (TX)	[34 ; 1.8]	mm	[test cases]
z_p (NEXT)	[34 ; 1.8]	mm	[test cases]
z_p (FEXT)	[34 ; 1.8]	mm	[test cases]
z_p (RX)	[32 ; 1.8]	mm	[test cases]
С_р	[0.4e-4 0.4e-4]	nF	[TX RX]

Package class B

Parameter	Setting	Units	Information
package_tl_gamma0_a1_a2	[5e-4 6.5e-4 3e-4]		
package_tl_tau	0.006141	ns/mm	
package_Z_c	[92 92 ; 70 70 ; 80 80 ; 100 100]	Ohm	
z_p select	1		
z_p (TX)	[46 ; 1 ; 1 ; 0.05]	mm	[test cases]
z_p (NEXT)	[46 ; 1 ; 1 ; 0.05]	mm	[test cases]
z_p (FEXT)	[46 ; 1 ; 1 ; 0.05]	mm	[test cases]
z_p (RX)	[44 ; 1 ; 1 ; 0.05]	mm	[test cases]
C_p	[0.4e-4 0.4e-4]	nF	[TX RX]

133 channels x 2 package classes = 266 test cases

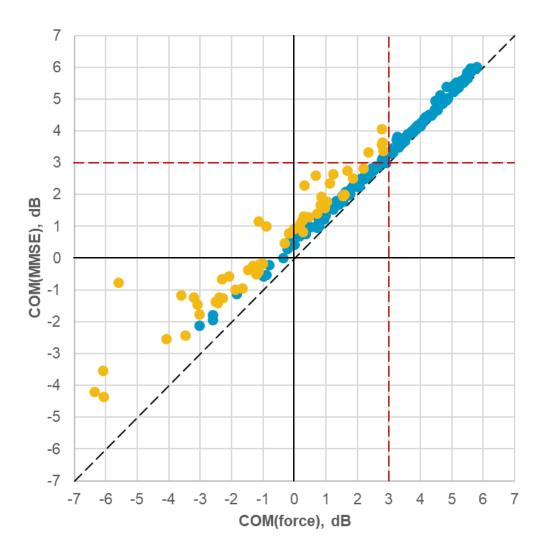
COM configuration used for testing (not a baseline proposal)

Parameter	Setting	Units	Information
f_b	106.25	GBd	
f_min	0.05	GHz	
Delta_f	0.01	GHz	
C_d	[0.4e-4 0.9e-4 1.1e-4 ; 0.4e-4 0.9e-4 1.1e-4]	nF	[TX ; RX]
L_s	[0.13 0.15 0.14 ; 0.13 0.15 0.14]	nH	[TX ; RX]
C_b	[0.3e-4 0.3e-4]	nF	[TX RX]
R_0	50	Ohm	
R_d	[50 50]	Ohm	[TX RX]
A_v	0.413	V	
A_fe	0.413	V	
A_ne	0.45	V	
L	4		
М	32		
f_r	0.58	*fb	
c(0)	1		min
c(-1)	0		[min:step:max]
c(-2)	No TX FFE 0		[min:step:max]
c(-3)	NO IX FFE 0		[min:step:max]
c(-4)	0		[min:step:max]
c(1)	0		[min:step:max]
N_b	1-tap DFE 1		
b_max(1)	0.85		
b_max(2N_b)	0		
b_min(1)	0		
b_min(2N_b)	0		
g_DC	0	dB	[min:step:max]
f_z	-ow-frequency 1e100	GHz	
		GHz	
1_μ2	equalizer only 1e100	GHz	
g_DC_HP	[-5:0.5:0]	dB	[min:step:max]
f_HP_PZ	1.328125	GHz	

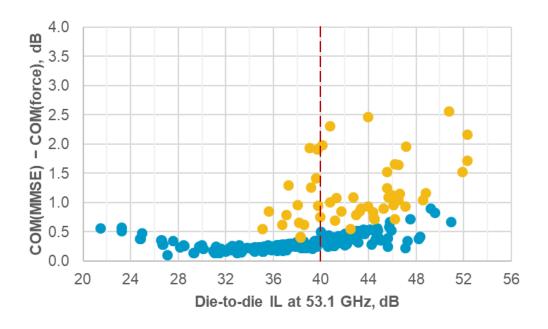
Parameter	Setting	Units	Information
DER_0	2e-4		
T_r	0.004	ns	
FORCE_TR	1	logical	
PMD_type	C2C		
TDR	0	logical	
ERL	0	logical	
EW	0	logical	
MLSE	0 No MLSE	logical	
ts_anchor	1		1 for pulse peak
sample_adjustment	[-24 24] Sample	time se	harch
Local Search	2 Sample	 	
sigma_RJ	0.01	UI	
A_DD	0.02	UI	
eta_0	6e-09	V^2/GHz	
SNR_TX	33	dB	
R_LM	0.95		

Parameter	Setting	Information	
ffe_pre_tap_len	5		
ffe_post_tap_len	10		
ffe_tap_step_size	0	16 ton EEE with no coefficient	
ffe_main_cursor_min	100	16-tap FFE with no coefficient	
ffe_pre_tap1_max	100	constraints and no floating ta	ps –
ffe_post_tap1_max	100		
ffe_tapn_max	100		
N_bg	0	0 1 2 or 3 groups	
N_bf	4	taps per group	
N_f	60	UI span for floating taps	
bmaxg	0.2	max DFE value for floating ta	ps
B_float_RSS_MAX	0.2	rss tail tap limit	
N_tail_start	61	(UI) start of tail taps limit	

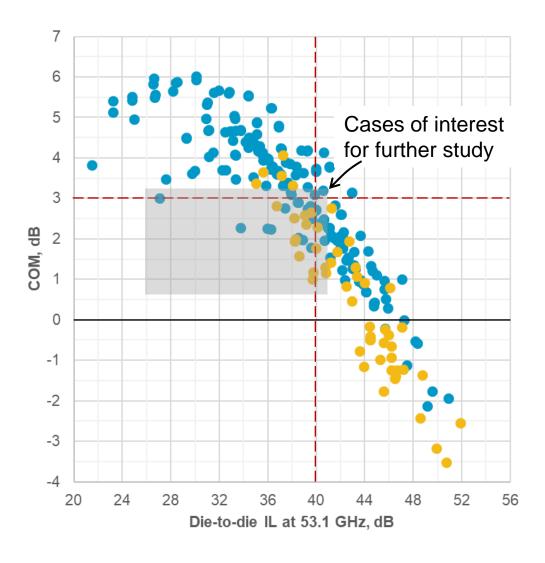
Comparison of results



- KR test cases are indicated by blue dots
- CR test cases are indicated by gold dots
- MMSE optimization consistently yields better results than the force algorithm



Summary of results for MMSE optimization



- KR test cases are indicated by blue dots
- CR test cases are indicated by gold dots
- Improved optimization yields encouraging results despite a lower reference receiver complexity ($N_w = 16$)
- Results do not include floating-tap FFE or any benefit from MLSE
- Improvements for the cases in the shaded area may be identified via further analysis
- Package models used in this study may not be consistent with host loss assumed for certain CR channels

MLSE = maximum likelihood sequence estimation

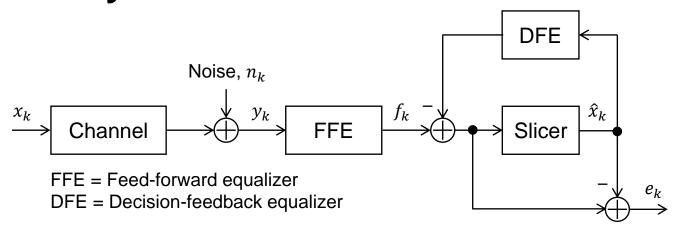
Summary and conclusions

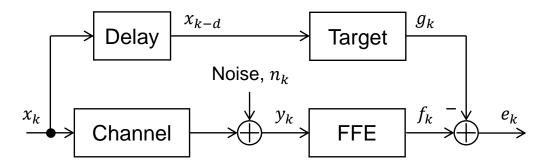
- MMSE optimization is a textbook approach to the determination of FFE and DFE coefficients
- It provides better COM for a given reference receiver than optimization techniques currently in use
- It offers opportunities to reduce the complexity of the reference receiver and / or increase allowances for impairments
- Noise autocorrelation function used for MMSE optimization can then be leveraged to calculate expected performance improvement from MLSE
- Floating-tap FFE can be readily incorporated into this framework (topic for a future contribution)
- The optimal choice of sampling phase is the one that maximizes FOM
- Adoption of a reference receiver framework is an important step toward baseline proposals

Appendix A

Derivation of minimum mean-squared error equalizer coefficients

System model

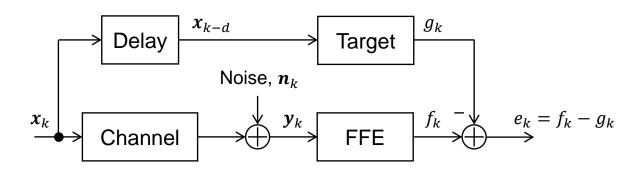




Equivalent model when slicer outputs are correct i.e., $\hat{x}_k = x_{k-d}$

Channel output	FFE output	Target signal
$y_k = \sum_{m=-d_h}^{N-d_h-1} h_m x_{k-m} + n_k$	$f_k = \sum_{i=0}^{N_W - 1} w_i y_{k-i}$	$g_k = x_{k-d} + \sum_{j=1}^{N_b} b_j x_{k-d-j}$
h_m is a coefficient of the channel pulse response (response has length N)	w_i is a coefficient of the feed- forward equalizer (N_w taps)	d is $d_h + d_w$ where d_w is the FFE delay
x_k is the transmitted (PAM-4) symbol at time k		b_j is a coefficient of the feedback
n_k is the noise value at time k		equalizer (N _b taps)

System model, matrix form



Note: Vectors and matrices are denoted by **bold face** type

Channel output	FFE output	Target signal
$egin{aligned} oldsymbol{y}_k &= oldsymbol{x}_k oldsymbol{H} + oldsymbol{n}_k \\ oldsymbol{x}_k & ext{ is a row vector of the } N + N_W - 1 ext{ most recently transmitted symbols } oldsymbol{x}_k & ext{ to } oldsymbol{x}_{k-N-N_W+2} \\ oldsymbol{h} & ext{ is the vector } [h_{-d_h},, h_0,, h_{N-d_h-1}] \\ oldsymbol{H} & ext{ is a diagonal-constant (Toeplitz) matrix} \\ &- & ext{ first column is } oldsymbol{h} & ext{ followed by } N_W - 1 ext{ zeros} \\ &- & ext{ first row is } h_{-d_h} & ext{ followed by } N_W - 1 ext{ zeros} \\ oldsymbol{n}_k & ext{ is a row vector of the } N_W & ext{ most recent noise values} \\ oldsymbol{n}_k & ext{ to } n_{k-N_W+1} \end{aligned}$	$f_k = y_k w$ y_k is a row vector of the N_w most recent FFE inputs y_k to y_{k-N_w+1} w is a column vector of the FFE coefficients w_0 to w_{N_w-1}	$g_k = x_{k-d} p$ x_{k-d} is a row vector of delayed symbols x_{k-d} to x_{k-d-N_b} p^T is [1 p^T] p^T is a column vector of feedback coefficients p^T to p^T
$= \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Definition of mean-squared error

 $E[e_k^2] = E[(f_k - g_k)^2] = E[f_k^2] + E[g_k^2] - 2E[f_k g_k]$ where E[x] is the expected value of random variable x

$$E[e_k^2] = \mathbf{w}^T \mathbf{R}_{yy} \mathbf{w} + \mathbf{p}^T \mathbf{R}_{xx} \mathbf{p} - 2\mathbf{w}^T \mathbf{R}_{yx} \mathbf{p}$$

where
$$R_{yy} = E[\mathbf{y}_k^T \mathbf{y}_k] = E[(\mathbf{H}^T \mathbf{x}_k^T + \mathbf{n}_k^T)(\mathbf{x}_k \mathbf{H} + \mathbf{n}_k)] = \sigma_X^2 \mathbf{H}^T \mathbf{H} + \mathbf{R}_{nn}$$
 where $\mathbf{R}_{nn} = E[\mathbf{n}_k^T \mathbf{n}_k]$

$$R_{xx} = E[x_{k-d}^T x_{k-d}] = \sigma_X^2 I_p$$
 where I_p is the N_p -by- N_p identity matrix

$$R_{yx} = E[\mathbf{y}_k^T \mathbf{x}_{k-d}] = E[(\mathbf{H}^T \mathbf{x}_k^T + \mathbf{n}_k^T) \mathbf{x}_{k-d}] = \sigma_X^2 \mathbf{H}_p^T$$
 where \mathbf{H}_p is rows $d+1$ to $d+N_b+1$ from \mathbf{H}

Let
$$\mathbf{R} = \mathbf{R}_{yy}/\sigma_X^2 = \mathbf{H}^T \mathbf{H} + \mathbf{R}_{nn}/\sigma_X^2$$

$$E[e_k^2] = \sigma_X^2(\boldsymbol{w}^T \boldsymbol{R} \boldsymbol{w} + \boldsymbol{p}^T \boldsymbol{p} - 2\boldsymbol{w}^T \boldsymbol{H}_p^T \boldsymbol{p})$$

Recall that $p^T = [1 \ b^T]$. Let where h_0 be row d+1 from H and H_b be rows d+2 to $d+N_b+1$ from H

$$E[e_k^2] = \sigma_X^2 (\boldsymbol{w}^T \boldsymbol{R} \boldsymbol{w} + 1 + \boldsymbol{b}^T \boldsymbol{b} - 2 \boldsymbol{w}^T \boldsymbol{h}_0^T - 2 \boldsymbol{w}^T \boldsymbol{H}_b^T \boldsymbol{b})$$

Minimum mean-squared error (MMSE) optimization

Find w and b that minimize mean-squared error subject to an equality constraint on $w^T h_0^T$ (amplitude of the equalized pulse).

Use the method of Lagrange multipliers. Begin with the Lagrange function.

 $\mathcal{L}(\boldsymbol{w}, \boldsymbol{b}, \lambda) = u(\boldsymbol{w}, \boldsymbol{b}) + \lambda v(\boldsymbol{w})$ where λ is the Lagrange multiplier.

where $u(\mathbf{w}, \mathbf{b}) = E[e_k^2]$ Minimize the mean-squared error ...

$$v(w) = -2\sigma_X^2(w^T h_0^T - 1)$$
 ... subject to $v(w) = 0$ $(w^T h_0^T = 1)$

$$\mathcal{L}(\boldsymbol{w}, \boldsymbol{b}, \lambda) = \sigma_X^2 (\boldsymbol{w}^T \boldsymbol{R} \boldsymbol{w} + 1 + \boldsymbol{b}^T \boldsymbol{b} - 2 \boldsymbol{w}^T \boldsymbol{h}_0^T - 2 \boldsymbol{w}^T \boldsymbol{H}_b^T \boldsymbol{b} - 2 \lambda \boldsymbol{w}^T \boldsymbol{h}_0^T + 2 \lambda)$$

Take the partial derivatives of the Lagrange function with respect to w, b, and λ and set them to 0.

$$\frac{\mathcal{L}(\boldsymbol{w},\boldsymbol{b},\lambda)}{d\boldsymbol{w}} = 2\sigma_X^2 (\boldsymbol{R}\boldsymbol{w} - \boldsymbol{h}_0^T - \boldsymbol{H}_b^T \boldsymbol{b} - \lambda \boldsymbol{h}_0^T) = 0$$

$$\frac{\mathcal{L}(\boldsymbol{w},\boldsymbol{b},\lambda)}{d\boldsymbol{b}} = 2\sigma_X^2 (\boldsymbol{b} - \boldsymbol{H}_b \boldsymbol{w}) = 0$$

$$\frac{\mathcal{L}(\boldsymbol{w},\boldsymbol{b},\lambda)}{d\boldsymbol{b}} = 2\sigma_X^2 (\boldsymbol{b} - \boldsymbol{H}_b \boldsymbol{w}) = 0$$

$$\frac{\mathcal{L}(\boldsymbol{w},\boldsymbol{b},\lambda)}{d\lambda} = 2\sigma_X^2 (-\boldsymbol{h}_0 \boldsymbol{w} + 1) = 0$$
This is a system of $N_w + N_b + 1$ equations with $N_w + N_b + 1$ unknowns.
$$\begin{bmatrix} \boldsymbol{R} & -\boldsymbol{H}_b^T & -\boldsymbol{h}_0^T \\ -\boldsymbol{H}_b & \boldsymbol{I}_b & \boldsymbol{z}_b^T \\ \boldsymbol{h}_0 & \boldsymbol{z}_b & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{w} \\ \boldsymbol{b} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \boldsymbol{h}_0^T \\ \boldsymbol{z}_b^T \\ \boldsymbol{\lambda} \end{bmatrix} \quad \text{where } \boldsymbol{I}_b \text{ is the } N_b \times N_b \text{ identity matrix and } \boldsymbol{z}_b \text{ is a row vector of } N_b \text{ zeros}$$

$$\begin{bmatrix} \mathbf{R} & -\mathbf{H}_b^T & -\mathbf{h}_0^T \\ -\mathbf{H}_b & \mathbf{I}_b & \mathbf{z}_b^T \\ \mathbf{h}_0 & \mathbf{z}_b & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{b} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{h}_0^T \\ \mathbf{z}_b^T \\ 1 \end{bmatrix}$$

MMSE optimization, continued

Solve the system of equations. This is readily done by computer and the derivation is not continued beyond this point.

$$\begin{bmatrix} \mathbf{w} \\ \mathbf{b} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{H}_b^T & -\mathbf{h}_0^T \\ -\mathbf{H}_b & \mathbf{I}_b & \mathbf{z}_b^T \\ \mathbf{h}_0 & \mathbf{z}_b & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{h}_0^T \\ \mathbf{z}_b^T \\ 1 \end{bmatrix}$$

It can shown that the solution for the Lagrange multiplier λ is the mean-squared error normalized to σ_X^2 . However, this result is not used since it may not be the correct value when limits are later imposed on b and b.

MMSE optimization with fixed feedback coefficients

Given b, find w that minimizes mean-squared error subject to the constraint $w^T h_0^T = 1$.

Recall that $p^T = [1 \ b^T]$. Use the method of Lagrange multipliers as before.

$$\mathcal{L}(\boldsymbol{w}, \boldsymbol{b}, \lambda) = u(\boldsymbol{w}, \boldsymbol{b}) + \lambda v(\boldsymbol{w})$$

where
$$u(\mathbf{w}, \mathbf{b}) = E[e_k^2]$$

$$v(\mathbf{w}) = -2\sigma_X^2(\mathbf{w}^T \mathbf{h}_0^T - 1)$$

$$\mathcal{L}(\boldsymbol{w}, \boldsymbol{b}, \lambda) = \sigma_X^2 (\boldsymbol{w}^T \boldsymbol{R} \boldsymbol{w} + \boldsymbol{p}^T \boldsymbol{p} - 2 \boldsymbol{w}^T \boldsymbol{H}_p^T \boldsymbol{p} - 2 \lambda \boldsymbol{w}^T \boldsymbol{h}_0^T + 2 \lambda)$$

Take the partial derivatives of the Lagrange function with respect to w and λ and set them to 0.

$$\frac{\mathcal{L}(\boldsymbol{w}, \lambda)}{d\boldsymbol{w}} = 2\sigma_X^2 (\boldsymbol{R}\boldsymbol{w} - \boldsymbol{H}_p^T \boldsymbol{p} - \lambda \boldsymbol{h}_0^T) = 0$$

$$\frac{\mathcal{L}(\boldsymbol{w}, \lambda)}{d\lambda} = 2\sigma_X^2 (-\boldsymbol{h}_0 \boldsymbol{w} + 1) = 0$$

Solve the system of $N_w + 1$ equations with $N_w + 1$ unknowns.

$$\begin{cases}
\begin{bmatrix} \mathbf{R} & -\mathbf{h}_0^T \\ \mathbf{h}_0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{H}_p^T \mathbf{p} \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{w} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{h}_0^T \\ \mathbf{h}_0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{H}_p^T \mathbf{p} \\ 1 \end{bmatrix}
\end{cases}$$