An Executive Summary of the MLSE Proposal

Hossein Shakiba
Huawei Technologies Canada
January 11, 2024

Introduction

- Defining MLSE for COM reference receivers was highlighted as one of the priorities in phase 1 (lusted 3dj elec 01 231207.pdf)
- MLSE seems necessary for KR/CR receivers
- MLSE may be necessary for C2M/C2C, depending on the loss target (TBD)
- $1^{\text {st }}$ priority is to agree if MLSE is needed to be a part of the reference receiver
- $2^{\text {nd }}$ priority is to find the best practical approach to achieve this
- Some options are:
A. Include MLSE COM calculations based on the existing proposal
B. Use MLSE coding gain as a rough estimate (costs accuracy)
C. Further simplify and relax COM margin by a constant amount (costs more accuracy)
D. Find a better replacement for MLSE (currently no clear path)
E. Ignore MLSE for channel compliance (channels need to become better)

History

Date	Content	Reference Contribution
November 2022	Original Proposal	shakiba 3df 01a 2211.pdf
January 2023	Further Details	shakiba_3dj_01_230116.pdf
February 2023	Recap	shakiba 3dj_elec 01 230223.pdf
February 2023	First COM Matlab Code	mellitz_3dj_elec_01a_230223.pdf
April 2023	First Update (U1.a, U1.b, U1.c)	shakiba_3dj_elec 01_230420.pdf
April 2023	MLSE Error Propagation	shakiba 3dj elec 02 230420.pdf
January 2024	Recap and Test Data	shakiba_3dj_elec 01a_240104.pdf

- Considering an MLSE implementation penalty was suggested in shakiba_3df 01a 2211.pdf as a later step (amount TBD)
- This presentation suggests making this explicit and as the last step of the proposal

Proposal Recap

- The proposal specified following steps:

1) Use COM analysis to find DFE tap, α
2) From COM data calculate $\operatorname{SNR}_{\text {DFE }}$
3) Use analysis to calculate $\operatorname{DER}_{\text {MLSE }}$ at $S N R_{\text {DFE }}$
4) Use analysis to calculate $S_{\text {D }}^{\text {DFE, equivalent }}$ for the same DFE that yields the same DER $_{\text {MLSE }}$
5) Increase from $S N R_{\text {DFE }}$ to $S N R_{\text {DFE, equivalent }}$ gives a good estimate of COM advantage of MLSE ($\triangle C O M$)

* 6) Consider an MLSE implementation penalty (TBD) to be subtracted from $\triangle C O M$

Summary of Δ COM Equations

- The original equation (currently coded in COM Matlab function) includes error propagation and should be disregarded and updated moving forward
- The following updated equations are all based on DER and exclude error propagation

	Intermediate Equation	MLSE \triangle COM Equation	Comment
U1.a	$D E R_{M L S E} \approx 2 \sum_{j=1}^{\infty}\left(\frac{3}{4}\right)^{j}\left(1-C D F_{\text {noise }}\left(A_{s} \sqrt{1+(j-1)(1-\alpha)^{2}+\alpha^{2}}\right)\right)$	$\Delta C O M \approx 20 \log _{10}\left(\frac{1}{A_{s}} C D F_{\text {noise }}^{-1}\left(1-\frac{2}{3} D E R_{\text {MLSE }}\right)\right)-\text { Implementation Penalty }$	Excludes Error Propagation
U1.b	$\begin{gathered} D E R_{\text {MLSE }} \approx 2 \sum_{j=1}^{\infty}\left(\frac{3}{4}\right)^{j}\left(1-C D F_{\text {noise }, j E E}\left(A_{s}\left(1+(j-1)(1-\alpha)^{2}+\alpha^{2}\right)\right)\right) \\ P D F_{\text {noise }, j E E}(x)=P D F_{\text {noise }}(x) * \operatorname{conv}_{i=2}^{j} P D F_{\text {noise }}(x /(1-\alpha)) * P D F_{\text {noise }}(x / \alpha) \end{gathered}$		U1.a + Improved MLSE Noise Calculation
U1.C	$\begin{aligned} & D E R_{\text {MLSE }} \approx 2 \sum_{j=1}^{\infty}\left(\frac{3}{4}\right)^{j}\left(1-C D F_{\text {noise }, j E E}\left(A_{s} \frac{\left(\operatorname{trace}\left(\rho_{\text {noise }, j E E}\right)\right)^{\frac{3}{2}}}{\sqrt{\sum_{\text {vertical }} \sum_{\text {horizental }}\left(\rho_{\text {noise }, j E E}\right.}}\right)\right) \\ & P D F_{\text {noise }, j E E}(x)=P D F_{\text {noise }}(x) * \operatorname{conv}_{i=2}^{j} P D F_{\text {noise }}(x /(1-\alpha)) * P D F_{\text {noise }}(x / \alpha) \end{aligned}$ For calculating the correlation matrix ($\rho_{\text {noise }, j E E}$) from the colored noise PSD, see shakiba 3dj elec 01a 240104.pdf		U1.b $+$ Noise Coloring Effect

- For analysis details and derivation of these equations refer to the previous contributions

Test Results (See Backup Slide for Test Channels)

Option A

Option B

Option C

- Implementation penalty is not included
- As updated equations kick in, \triangle COM reduces and becomes more channel dependent
- Coding gain is not a representative of MLSE COM advantage when DFE tap saturates
- For the test channels:
* The difference between $\triangle C O M$ and coding gain could be as much as $+0.4 \mathrm{~dB} /-1.1 \mathrm{~dB}$
$*$ The difference between $\triangle C O M$ and its fix average value could be as much as $+0.4 \mathrm{~dB} /-0.6 \mathrm{~dB}$
- At $200+G$ every dB (or even a fraction of a dB) counts and must be meaningful to close the link

Backup Slide - Test Channels

Channel \#	Channel Source
1	https://www.ieee802.org/3/dj/public/tools/CR/lim 3dj 03 230629.zip
2	https://www.ieee802.org/3/dj/public/tools/CR/lim 3dj 04 230629.zip
3-7	https://www.ieee802.org/3/di/public/tools/CR/kocsis 3di 02 2305.zip
8-34	https://www.ieee802.org/3/dj/public/tools/KR/mellitz 3dj 02 elec 230504.zip
35-40	https://www.ieee802.org/3/dj/public/tools/CR/shanbhag 3dj 01 2305.zip
40-44	https://www.ieee802.org/3/dj/public/tools/KR/shanbhag 3dj 02 2305.zip
45-80	https://www.ieee802.org/3/di/public/tools/KR/weaver 3dj 02 2305.zip
80-88	https://www.ieee802.org/3/dj/public/tools/KR/weaver 3dj elec 01 230622.zip
89	https://www.ieee802.org/3/dj/public/tools/CR/lim 3dj 07 2309.zip
90-96	https://www.ieee802.org/3/dj/public/tools/KR/akinwale 3dj 01 2310.zip
97-100	https://www.ieee802.org/3/dj/public/tools/CR/akinwale 3dj 02 2311.zip
101-112	https://www.ieee802.org/3/di/public/tools/CR/weaver 3dj_02 2311.zip

