802.3dj - CR Considerations for Test Fixture Specifications

Chris DiMinico PHY-SI LLC/SenTekse LLC cdiminico@ieee.org

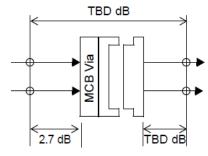
802.3dj Task Force

Contributors

- Jason Ellison, Curtis Donahue Rohde & Schwarz
- O.J. Danzy, Rick Rabinovich, Mike Resso Keysight
- Sam Kocsis Amphenol
- Rich Mellitz Samtec

Purpose

- Review methodology for accounting for the effects of the differences between the insertion loss of an actual test fixture and the reference 802.3dj test fixture insertion losses.
 - Consider IEEE 370 specification <u>methods</u> "for quantifying and validating test fixture accuracy"
 - Procedures for TP2 (TX) and TP3 (RX) measurements with "accounting".


Background

- **Baseline adoption**
 - **TP1-TP4 and MCB IL adopted**
 - **MTF and HCB TBD**

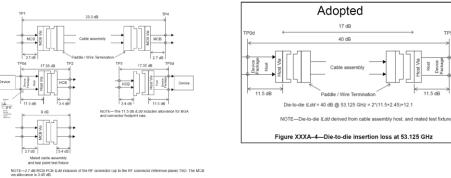
Motion #13

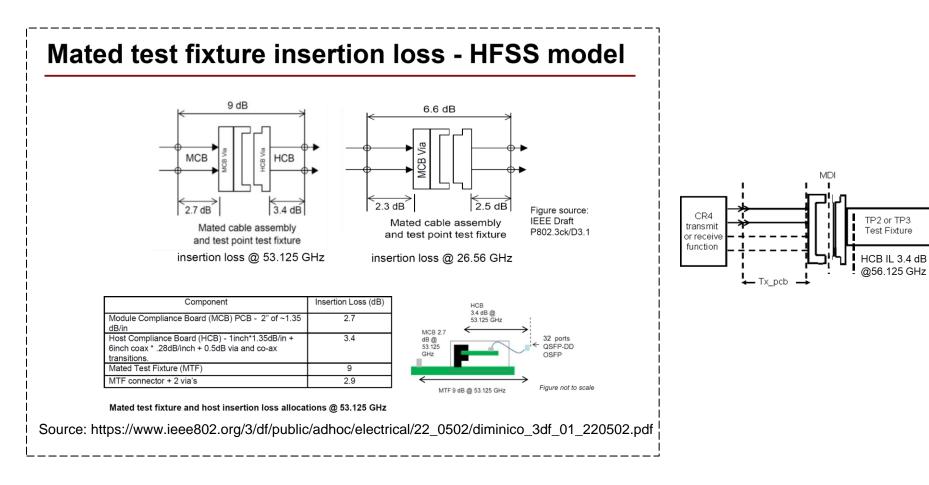
Move to adopt the "TP1-TP4 IL" column in the table and MCB insertion loss (2.7 dB) on slide 9 of diminico 3dj 01 2311 for 200GBASE-CR1, 400GBASE-CR2, 800GBASE-CR4 and 1.6TBASE-CR8 PHYs.

Mated cable assembly and test point test fixture

TP5d

Flexible host architectures and cable assemblies HN-HN depicted •




Figure XXXA-3—Cable assembly, host, and test fixture insertion loss at 53,125 GHz

Informative annex with inclusion of flexible host architectures and cable assemblies IL dB @53.125 GHz

				Cable			
				+2*connectors	-		
Cable Assembly	Link Configurations IL	TPOd-TP2 IL (dB)	TP3-TP5d IL (dB	(dB)	TP1-TP4 IL (dB)	MTF IL (dB)	Die-to-die IL (dB)
CA-A	HH-HN	22.35	17.35	12	18.3	9	40
CA-B	HH-HL	22.35	12.35	17	23.3	9	40
CA-B - depicted	HN-HN	17.35	17.35	17	23.3	9	40
CA-C	HN-HL	17.35	12.35	22	28.3	9	40
CA-D	HL-HL	12.35	12.35	27	33.3	9	40
							9

HCB IL

- HFSS model results presented; feasibility HCB 3.4 dB @53.125 GHz
- Achieving 3.4 dB HCB TF meeting SI that's mechanically reliable (cycle life) challenging
- Considerable interest in minimizing HCB IL for TP2/TP3 measurements

802.3ck - TP2/TP3 TF (HCB) and CATF (MCB) reference IL

 The effects of differences between the insertion loss of an actual test fixture and the reference insertion loss are to be accounted for in the measurements without guidance.

162B.2 TP2 or TP3 test fixture

The TP2 or TP3 test fixture (also known as Host Compliance Board) is required for measuring the transmitter and receiver specifications at TP2 and TP3. The TP2 and TP3 test points are illustrated in Figure 162–2.

162B.2.1 TP2 or TP3 test fixture insertion loss

<u>The TP2 or TP3 test fixture printed circuit board (PCB) insertion loss values determined using</u> Equation (162B–1) shall be used as the TP2 or TP3 test fixture reference insertion loss. The effects of differences between the insertion loss of an actual test fixture and the reference insertion loss are to be accounted for in the measurements.

 $ILdd_{tfref}(f) = 1.02(0.001 + 0.24\sqrt{f} + 0.046f)$ (162B-1)

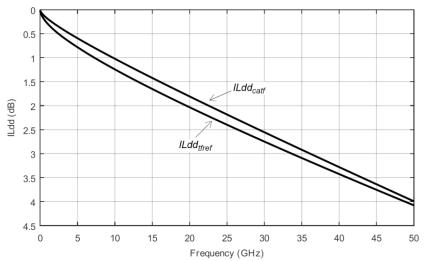
for 0.01 GHz $\leq f \leq$ 50 GHz

where

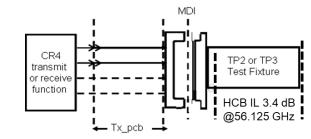
 $ILdd_{tfref}(f)$ is the test fixture PCB reference insertion loss in dB at frequency ffis the frequency in GHz

The TP2 or TP3 test fixture PCB reference insertion loss is illustrated in Figure 162B-1.

162B.3.1 Cable assembly test fixture insertion loss


The cable assembly test fixture PCB and test point insertion loss values determined using Equation (162B–2) shall be used as the test fixture reference insertion loss. The effects of differences between the insertion loss of an actual test fixture and the reference insertion loss are to be accounted for in the measurements. $ILdd_{catf}(f) = 1.073(-0.00125 + 0.12\sqrt{f} + 0.0575f)$ (162B–2)

for 0.01 GHz $\leq f \leq$ 50 GHz


where

 $ILdd_{catf}(f)$ is the test fixture PCB reference insertion loss in dB at frequency ffis the frequency in GHz

The cable assembly test fixture reference insertion loss is illustrated in Figure 162B-1.

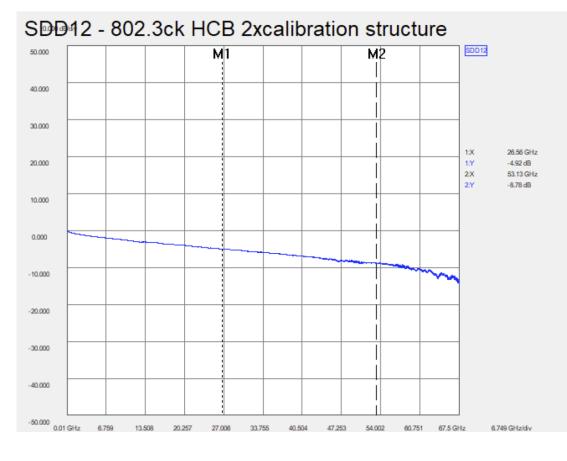
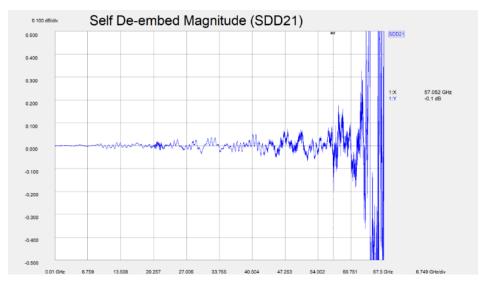


Figure 162B–1—Test fixtures PCB reference insertion losses

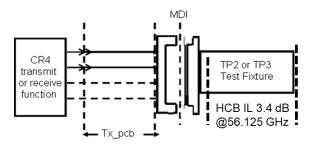

IEEE 370 specification test fixture accuracy

- 802.3ck HCB measured to 67.5 GHz
 - 2xcal IL @ 53.125 ~ 8.8 dB
 - HCB IL @ 53.125 ~ 4.4 dB

- One of the initial tests mentioned in IEEE 370 is the self de-embed, or residual test.
- This test will show how well a 2x thru fixture can be de-embedded from itself.
- Measurements of a 2x thru cal structure of a 802.3ck host compliance board (HCB) was used in the self-de-embed test.

IEEE 370 - self de-embed, or residual test

The 'residual' results would ideally be a perfect 0 dB transmission and 0 degrees phase response.


- Due to measurement and calculation uncertainties, there will be some artifacts remaining from the process. To bound the response the recommended limits of +/- 0.1 dB for magnitude and +/- 1 degree for phase are applied.
- 802.3ck signaling rate 56.125 GHz. Nyquist 26.56 GHz

IEEE 370 - FER1, FER2, and FER3

- HCB 2x-thru measurement is compared against FER1, FER2, and FER3.
- Limit lines are added to show the fixture meets these requirements to at least the Nyquist frequency of 200G PAM4 serial data, 53.125 GHz. Examining the data at higher frequencies, the HCB exceeds FER 3 near 62 GHz.

Validated test fixtures are deemed suitable to be used to account for differences in measurement to reference IL (de-embedding).

Summary

- Review methodology for accounting for the effects of the differences between the insertion loss of an actual test fixture and the reference 802.3dj test fixture insertion losses.
 - Consider IEEE 370 specification <u>methods</u> "for quantifying and validating test fixture accuracy"
 - Procedures for TP2 (TX) and TP3 (RX) HCB measurements to adjust HCB IL to reference IL.