# COM Reference RX Progress Update - 29 February 2024 

Kent Lusted, Intel Corporation, IEEE P802.3dj Task Force Electrical Track Chair

Rich Mellitz, Samtec

## Adopted COM Ref RX Framework

- At the January 2024 interim meeting, the TF adopted (related to COM):
- New reference RX framework of RXFFE+1DFE
- New MMSE coefficient optimization procedure

Motion \#10

Move to adopt lusted_nowell_3dj_01_2401 page 7

M: Kent Lusted
S: Adee Ran
Technical (>=75\%)
802.3 voters only

Result: passed by unanimous consent 1:41 p.m. Task Force: 3dj

Bucket
adopt the reference receiver framework baseline in
healey_3dj_01_2401.pdf, slides 5-15
adopt a PMD control function based on 162.8.11 (IEEE Std. 802.3ck-2022) for 200G/lane Backplane and Copper Cable PMDs, with max_wait_timer = TBD
adopt the updated parameter values for Class B packages per benartsi_3dj_01_2401 slide 7
adopt the AN73 baseline proposal in lusted_3dj_04_2401, slides 6-14
adopt in-band training for PMAs with physically instantiated chip-to-chip interfaces (AUI-C2C) at $200 \mathrm{~Gb} / \mathrm{s}$ per lane, based on 162.8.11 (IEEE Std 802.3ck-2022) with training frame bit assignments and state diagrams TBD

## Adopted MLSE Equation for Evaluation of

 Channels- At the January 2024 interim meeting, the TF adopted (related to COM) the MLSE Eq U1.c for evaluation
- Implementation penalty = TBD
- Note: No commitment to use MLSE effect in COM for any


## Motion \#7

Move to adopt lusted_nowell_3dj_01_2401 page 4

M: Kent Lusted
S: Mark Nowell
Technical (>=75\%)
802.3 voters only

Result: Y: 58, N: 3, A: 20 Motion passed 11:33 a.m.
Task Force: 3dj

## MLSE (SP7)

Adopt the MLSE COM calculations based on equation U1.c in shakiba_3dj_01b_2401 slide 11 (with implementation penalty TBD) for the purpose of evaluating COM performance on channels (200G/lane electrical interfaces and electrical PMDs using MLSE are TBD.)

## COM Work Item List

Currently in development:

- RXFFE + 1 DFE framework and MMSE coef optimization

In the queue:

- FFE Floating taps
- MLSE Eq U1.c


## Current Status - 26 February

- Functions added or changed in the COM version 4.3:
- MMSE and get_PSDs (for determining Rx FFE settings and noise)
- Implement equations in healey_3dj_01_2401
- Main program (computes COM)
- Modified function get PDF and Create Noise PDF and added a get PSDs reference
- Uses worst case crosstalk index found in MMSE process
- Sigma_Tx derived from SNR_TX uses equations in healey_3dj_01_2401
- optimize_fom (loops to find best equalization settings)
- Invokes MMSE and get_PSDs function if new configuration keyword is active
- New keywords added to read_ParamConfigFile
- "num_ui_RXFF_noise" and "FFE_OPT_METHOD" ("MMSE" or "FV-LMS")


## Observations with COM v4.3

- Margin seems "quite a bit improved" from prior versions (see slide 7)
- Initial bench testing was only for a few cases
- Execution time could be up to 30x longer when sweeping TXFFE and CTLE settings
- Use small solution space to start.
- Suggestion: start with 2 pre TXFFE taps with coarse steps, a few G_DC2 settings, and no G_DC (make G_DC=0 and set poles and zeros to $10^{10} \mathrm{GHz}$ ).
- Results for one case, in slide 7
- RxFFE pre6/post24 used with all taps constrained to +/-1.
- More configuration details and channel information in the back up section
- Consider "LOCAL SEARCH" set to 2 (improves speed but less optimal results)
- "LOCAL SEARCH" $=0$ is used for a full grid search
- "num_ui_RXFF_noise" is the number of Ul to be used to compute noise over
- For the few case tried, num_ui_RXFF_noise $=1024$ seems to be the point of diminishing return ( $\sim 0.01 \mathrm{~dB}$ COM difference)
- Some cable channels have measurable energy which can span over 3000 UI!
- However, most of these channels have $99.9 \%$ or their noise energy in the first 1000 UI.


## Weaver_3dj_elec_01_230622 Example

## Old Method

Local Search $=2$ FFE_OPT_METHOD = FV-LMS

$$
13 \mathrm{~dB}
$$

TXFFE coefficients: [0-0.05 0.95 0]
SNR ISI: $\quad 28 \mathrm{~dB}$
CTLE DC gain: -4 dB
CTF peaking gain: - 2.4 dB
Symbol Available signal: 0.0074777
*Die to die loss $=38.2359 \mathrm{~dB}$
run time $=0.923739 \mathbf{~ m i n}$
WC All cases FAIL ... COM = 1.692 dB

New Method
Local Search $=2$ num_ui_RXFF_noise =1024 FFE_OPT_METHOD = MMSE

FOM: $\quad 31 \mathrm{~dB}$

SNR ISI: $\quad 28 \mathrm{~dB}$
CTLE DC gain: $\quad-3 \mathrm{~dB}$
CTF peaking gain: -2 dB
Symbol Available signal: 0.0076859
*Die to die loss $=38.2359 \mathrm{~dB}$
run time $=1.86633 \mathbf{~ m i n}$
WC All cases FAIL ... COM $=2.025 \mathrm{~dB}$

## New Method

Local Search $=0$ num_ui_RXFF_noise $=4096$ FFE_OPT_METHOD = MMSE

FOM: $\quad 31 \mathrm{~dB}$
TXFFE coefficients: [0lllll 001 0]
SNR ISI: $\quad 28 \mathrm{~dB}$
CTLE DC gain: $\quad-3 \mathrm{~dB}$
CTF peaking gain: -2 dB
Symbol Available signal: 0.0076868
*Die to die loss $=38.2359 \mathrm{~dB}$
run time $=51.6935 \mathbf{~ m i n}$
WC All cases FAIL ... COM = 2.015 dB

## Next Steps

- Participants are asked to review COM code changes to ensure alignment with the adopted proposals per healey_3dj_01_2401 slides 5-15
- Need a few volunteers to cross check a few channel analysis results in healey_3dj_01_2401
- Please start using COM v4.3 in channel analysis and consider contributions for the March Plenary
- Not functional or untested in the current v4.3 release are (Do Not Use):
- FFE floating taps
- MLSE: no U1.c MLSE function (U0 EQ still in the code)
- Send bug reports or functional issues to Kent and Rich


## Summary

- The COM release v4.3 is focused on implementation of adopted RXFFE +1 DFE framework and MMSE coef optimization
- Other adopted features (floating taps, MLSE Eq U1.c) are not functional or untested
- We must get the adopted framework and functionality correct FIRST ... then work on improving run time and adding the remaining adopted features (floating taps, MLSE Eq U1.c)
- Other requests/changes/improvements/features/etc are not being considered at this time until the backlog is cleared
- More releases planned soon that incorporate the other adopted features and/or bug fixes
- Next update at March 2024 Plenary meeting


## Channel files used are from

 weaver_3dj_elec_01_230622Subdirectory: NPC_300mm_BP_800mm_NPC_300mm_room_temp

## KR_ch_3in_PCB_NPC_300mm_29AWG_BP_800mm_27AWG_NPC_300mm_29AWG_thru

| KR_ch_3in_PCB_NPC_300mm_29AWG_BP_800mm_27AWG_NPC_300mm_29AWG_FEXT1 | KR_ch_3in_PCB_NPC_300mm_29AWG_BP_800mm_27AWG_NPC_300mm_29AWG_NEXT1 |
| :---: | :---: |
| KR_ch_3in_PCB_NPC_300mm_29AWG_BP_800mm_27AWG_NPC_300mm_29AWG_FEXT2 | KR_ch_3in_PCB_NPC_300mm_29AWG_BP_800mm_27AWG_NPC_300mm_29AWG_NEXT2 |
| KR_ch_3in_PCB_NPC_300mm_29AWG_BP_800mm_27AWG_NPC_300mm_29AWG_FEXT3 | KR_ch_3in_PCB_NPC_300mm_29AWG_BP_800mm_27AWG_NPC_300mm_29AWG_NEXT3 |
| KR_ch_3in_PCB_NPC_300mm_29AWG_BP_800mm_27AWG_NPC_300mm_29AWG_FEXT4 | KR_ch_3in_PCB_NPC_300mm_29AWG_BP_800mm_27AWG_NPC_300mm_29AWG_NEXT4 |
| KR_ch_3in_PCB_NPC_300mm_29AWG_BP_800mm_27AWG_NPC_300mm_29AWG_FEXT5 | KR_ch_3in_PCB_NPC_300mm_29AWG_BP_800mm_27AWG_NPC_300mm_29AWG_NEXT5 |
|  |  |

## Main Configuration

| Table 93A-1 parameters |  |  |  |
| :---: | :---: | :---: | :---: |
| Parameter | Setting | Units | Information |
| f_b | 106.25 | GBd |  |
| $\mathrm{f}_{\text {min }}$ | 0.05 | GHz |  |
| Delta_f | 0.01 | GHz |  |
| C_d | [0.4e-4 0.9e-4 1.1e-4;0.4e-4 0.9e-4 1.1e-4] | nF | [TXRX] |
| L_s | [0.13 0.15 0.14; 0.13 0.15 0.14] | nH | [TX RX] |
| c_b | [0.3e-4 $0.3 \mathrm{e}-4]$ | nF | [ [TXRX] |
| R_0 | $5.00 \mathrm{E}+01$ | Ohm |  |
| R_d | [5050] | Ohm | [TXRX] |
| PKG_NAME | PKG_HiR_CLASSB PKG_Hir_CLASSB |  | TXRX |
| A V | 0.413 | v |  |
| A fe | 0.413 | v |  |
| A_ne | 0.608 | v |  |
| 2_p s select | [3] |  |  |
| L | 4 |  |  |
| M | 32 |  |  |
| filter and Eq |  |  |  |
| f_r | 0.58 | ${ }^{*} \mathrm{fb}$ |  |
| c(0) | 0.55 |  | min |
| cl-1) | [-0.40:0.05:0] |  | [min:step:max] |
| c (-2) | [ 0:05:0.0.1] |  | [min:step:max] |
| $\mathrm{c}(-3)$ | 0 |  | [min:step:max] |
| c(-4) | 0 |  | [min:step:max] |
| c(1) | 0 |  | [min:step:max] |
| N_b | 1 | UI |  |
| b_max(1) | 0.75 |  | As/dffe1 |
| b_max(2..N_b) | 0.3 |  | As/dfe2..N_b |
| $\mathrm{b}^{\text {_ }}$ min(1) | 0 |  | As/dffe1 |
| b_min(2..N_b) | -0.15 | 5 | As/dfe2.N_b |
| g_DC | [-10:1:3] | dB | [min:step:max] |
| f_z | 42.50 | GHz |  |
| $f_{\text {fpl }}$ | 42.50 | GHz |  |
| $\mathrm{f}_{\mathrm{p}} \mathrm{p} 2$ | 106.25 | GHz |  |
| g_DC_HP | [-5:1:0] |  | [min:step:max] |
| f_HP_PZ | 1.328125 | $\mathrm{GHz}^{\text {G }}$ |  |
| Butterworth | 1 | logical | include in fr |



Note: the values in white boxes and red boxes listed here are not baseline proposed parameter values.

## Configuration for Packages



| .START | PKG_Module |  |  |
| :---: | :---: | :---: | :---: |
| Table 93A-3 parameters |  |  |  |
| Parameter | Setting | Units | Information |
| package_tl_gamma0_a1_a2 | [ 0.00050 .000890 .0002 ] |  |  |
| package_tl_tau | 0.006141 | ns/mm |  |
| package_Z_c | [87.5 87.5; $9595 ; 100100 ; 100100]$ | Ohm |  |
| R_d | [5050] | Ohm | [TX RX] |
| z_p (TX) | [8888; 0000;0000;0000] | mm | [test cases] |
| z_p (NEXT) | [8888; 0000;0000;0000] | mm | [test cases] |
| z_p (FEXT) | [8888; 0000;0000;0000] | mm | [test cases] |
| z_p (RX) | [8888; 0000;0000;0000] | mm | [test cases] |
| C_p | [0.4e-4 0.4e-4] | nF | [TX RX] |
| A_V | [ 0.40570 .40570 .40570 .4057$]$ | V | $\mathrm{Vf}=0.400$ |
| A_fe | [ 0.40570 .40570 .40570 .4057$]$ | V | $\mathrm{Vf}=0.399$ |
| A_ne | [ 0.6000 .6000 .6000 .600 ] | V | $\mathrm{Vf}=0.400$ |
| .END |  |  |  |
|  |  |  |  |
| .START | PKG_Null |  |  |
| Table 93A-3- parameters |  |  |  |
| Parameter | Setting | Units | Information |
| package_tl_gamma0_a1_a2 | [5e-4 0.001 0.03] |  |  |
| package_tl_tau | 0.006141 | $\mathrm{ns} / \mathrm{mm}$ |  |
| package_Z_c | [92 92; 70 70; 80 80; 100 100] | Ohm |  |
| R_d | [5050] | Ohm | [TX RX] |
| z_p (TX) | [0000;0000;0000;0000] | mm | [test cases] |
| z_p (NEXT) | [0000;0000;0000;0000] | mm | [test cases] |
| z_p (FEXT) | [0000;0000;0000;0000] | mm | [test cases] |
| z_p (RX) | [0000;0000;0000;0000] | mm | [test cases] |
| C_p | [00] | nF | [TX RX] |
| A_v | 0.5 | V | $\mathrm{Vf}=0.400$ |
| A_fe | 0.5 | V | $\mathrm{Vf}=0.400$ |
| A_ne | 0.61 | V |  |
| END |  |  |  |

