The increasing implementation cost due to chromatic dispersion in duplex optical PHYs

> John Johnson, Broadcom February 22, 2024

IEEE 802.3dj Task Force, Feb. 2024 Optical Ad Hoc Meeting

Johnson_3dj_optx_01_240222 | 1

Supporters

- Chris Cole, Coherent
- Mark Kimber, Semtech
- Roberto Rodes, Coherent

Motivation

- With each Ethernet speed generation, CD penalty is becoming a more significant part of the power budget at ever shorter reaches.
- Through the 100G/L generation, more costly mitigation strategies were only needed for low volume long reach duplex PHYs, but at 200G/L, additional mitigation is needed for high volume 2km FR4.
- The use of overly conservative worst-case fiber specs in Ethernet channel models burdens the industry with the cost of unnecessarily complex, costly and power-hungry modules: <u>cole 3df 01 2211</u>
- The development of new channel models utilizing statistical techniques can reduce the growing impact of CD at higher rates

Mitigation strategies for CD penalty

- Adaptive launch power: OMA TDECQ introduced in 50GbE generation
 - Higher launch OMA requires higher laser power consumption
- Modulation format: $IM-DD \rightarrow Coherent$
 - Coherent is more costly and higher power consumption than IM-DD
- Wavelength plan: Uncooled CWDM \rightarrow Cooled LAN-WDM
 - Uncooled CWDM has been the low-cost workhorse for duplex PHYs
 - Cooled lasers on tighter spacing increase cost and power consumption
- Inner FEC: Host end-to-end RS FEC \rightarrow RS + Inner FEC in module
 - Inner FEC increases baud rate and adds DSP cost, power consumption and latency
- Updated channel models: Reduced CD requirements
 - Worst case fiber specs → Specs based on statistical distributions of deployed or recently manufactured fibers
 - <u>cole 3dj optx 01 230427</u>, <u>rodes 3dj 01a 2401</u>, <u>johnson 3dj 01a 2307</u>
 - Uniform fiber → Statistical averaging over multi-segment links ("CDq")
 - SG15-LS86 Redacted.pdf, Liu 3dj 01 2401, ferretti 3dj optx 01b 230615, stassar 3df 01 2401

Evolution of modulation format

Rate	500 m	2 km	6-10 km	30-40 km
4x25G				
4x50G				
4x100G				
4x200G				
4x400G*				

* This is one illustrative scenario of 4x400G. The actual implementation is TBD based on consideration of multiple technology choices.

NRZ	lowest RX sensitivity, higher BW/baud components
PAM	higher RX sensitivity, DSP-enabled
Coherent	higher cost optics, high sample rate DSP, higher Pdis

Statistical averaging over multiple cable segments enables 800GBASE-LR4 to serve datacenter applications up to 10km

- IM-DD has been used for all Ethernet generations through 100G/L
- Starting with 200G/L, coherent objectives have been adopted down to 10km
- Coherent is likely to be required for > 2km at 4x400G, depending on implementation choices

Evolution of wavelength plan

Rate	500 m	2 km	6-10 km	30-40 km
4x25G				
4x50G			*	
4x100G				
4x200G				
4x400G				

* 802.3cn chose LAN-WDM, but CWDM is possible

Uncooled CWDM	lower cost lasers, no TEC, lowest Pdis
Cooled LAN-WDM	higher laser and TEC cost, Pdis ~ +1W for 4 channels
Coherent Single WL	highest per-laser cost (± 10GHz), TEC cost and Pdis

New channel models could enable CWDM?

- 800GBASE-LR4-x with reach up to ~6 km
- 1.6TBASE-FR4-500, depends on mod. format

- Uncooled CWDM has been used for extensively for low-cost 4λ PHYs
 - Relaxed laser WL and mux specs
 - No added TEC power consumption
- Maintaining CWDM at higher rates allows multi-rate interoperability
- The CD-limited WL range has been shrinking, forcing use of cooled LAN-WDM WL's for long reach PHYs
 - <u>Rodes 3df 01b 221012</u>
 - Johnson 3df 1a 221011
- CWDM might not be possible at all for 4x400G IM-DD: maybe only for 500m with new channel model

Evolution of FEC

Rate	500 m	2 km	6-10 km	30-40 km
4x25G				
4x50G				
4x100G				
4x200G				
4x400G				

RS FEC	no FEC in module, low latency
RS + Inner FEC	Inner FEC in module, higher latency, higher Pdis
RS + Coherent FEC	stronger FEC in module, highest latency, higher Pdis

New channel models could enable RS FEC only?

- 800GBASE-FR4
- 1.6TBASE-FR4-500, depends on mod. format

- RS FEC alone has been used through the 100G/L generation
 - No added module power consumption
 - Low latency
- 200G/L brought in Hamming inner FEC for ≥ 2km reach
 - Added DSP IC cost and power
 - Added latency
- It's unclear if any 4x400G PHY will be able to use RS FEC alone: possibly only for 500m with new channel model

Discussion

- Chromatic dispersion is forcing ever more costly mitigation strategies to be implemented for popular 4λ duplex PHYs
- Previously, this was a long-reach issue; now it affects 2km reaches at 4x200G, and will be a serious impediment to IM-DD adoption at 4x400G
- The use of overly conservative worst-case fiber specs in Ethernet channel models (G.652) burdens the industry with the extra cost of unnecessarily complex, costly and power-hungry modules
- The development of new channel models utilizing statistical techniques can help reduce the growing impact of CD at higher rates
- It's not a panacea, but it could allow some high-volume PHYs on the margin to be able to avoid the use of LAN-WDM, inner FEC or other mitigations

Thank you