
IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s 

Ethernet Task Force

Notes on interleaving of codewords

Omer S. Sella

1



Background

• Reed-Solomon code introduced in 802.3bj uses 10 bit symbols and a 

generator polynomial.

• There have been a few presentations on interleaving, but the context for this 

presentation only requires 

• ran_3dj_01a_230206

• ran_3df_02a_2211

• i.e., interleaving that respects the code structure, which is 10 bits for RS FEC 

as introduced by 802.3bj

2

https://www.ieee802.org/3/dj/public/23_01/23_0206/ran_3dj_01a_230206.pdf
https://www.ieee802.org/3/df/public/22_11/ran_3df_02a_2211.pdf


• Multiple codewords that belong to the same code, i.e., generated by a 

common polynomial g 𝑋

• 𝑐0 𝑋  = σ𝑘=0
𝑛 𝑐0

𝑘𝑋𝑘 = 𝑔 𝑋 × 𝑎0(𝑋)

...

• 𝑐𝑆−1 𝑋  = σ𝑘=0
𝑛 𝑐𝑆−1

𝑘 𝑋𝑘 = 𝑔 𝑋 × 𝑎𝑆−1 𝑋

• Interleaving of one symbol from each codeword at a time, so:

• 𝑐0
0, 𝑐1

0, … 𝑐𝑆−1
0 , 𝑐0

1, 𝑐1
1, … 𝑐𝑆−1

1 , …

• Lower script refers to message / codeword index, and upper script 

refers to index within a message / data

Assumptions

3



Spacing:

• For a polynomial with coefficients 𝑓0, … 𝑓𝑛 (upper script index, not power), i.e.:

• 𝑓 𝑋 = 𝑓0 + 𝑓1𝑋 + 𝑓2𝑋2 +  … 𝑓 
𝑛𝑋𝑛 =  σ𝑘=0

𝑛 𝑓 
𝑘𝑋𝑘 

• Inserting 𝑆 − 1 zero coefficients between existing coefficients, i.e.: 

• 𝑓0 + 0 ⋅ 𝑋 +  … + 0 ⋅ 𝑋𝑆−1 +  𝑓1𝑋𝑆 + 0 ⋅ 𝑋𝑆+1 … 

• Is obtained through a change of variable 𝑋 → 𝑋𝑆 , i.e.: 

• 𝑓0 + 0 ⋅ 𝑋 +  … + 0 ⋅ 𝑋𝑆−1 +  𝑓1𝑋𝑆 + 0 ⋅ 𝑋𝑆+1 … = 𝑓 𝑋𝑆

– Replacing 𝑋 with 𝑋𝑆 

4



Lifting:

• For a polynomial with coefficients 𝑓0, … 𝑓𝑛 (upper script index, not power), i.e.:

• 𝑓 𝑋 = 𝑓0 + 𝑓1𝑋 + 𝑓2𝑋2 +  … 𝑓 
𝑛𝑋𝑛 =  σ𝑘=0

𝑛 𝑓 
𝑘𝑋𝑘 

• Lifting by T i.e.: 

• 𝑓0 ⋅ 𝑋𝑇 +  𝑓1𝑋𝑇+1 + ⋯ 

• Is obtained by multiplying 𝑓 𝑋  by 𝑋𝑇, i.e.:

• 𝑋𝑇 ⋅ 𝑓 𝑋

5



Symbol-wise interleaving in polynomial notation:
• Start with 0 ≤ 𝑖 < 𝑆 codewords:

• 𝑐𝑖 𝑋 = 𝑐𝑖
0 + 𝑐𝑖

1𝑋 + 𝑐𝑖
2𝑋2 +  … 𝑐𝑖

𝑛𝑋𝑛𝑐0 𝑋𝑛−1 =  σ𝑘=0
𝑛 𝑐0

𝑘𝑋 𝑛−1 𝑘

• Introduce spacing between symbols, by insertion of (𝑠 − 1) zeros:

• 𝑐𝑖 𝑋 → 𝑐𝑖 𝑋𝑠 = 𝑐𝑖
0 + 0 ⋅ 𝑋 +  … + 0 ⋅ 𝑋𝑠−1 +  𝑐𝑖

1 ⋅ 𝑋𝑠 

– (same change of variable for all)

• Now lift codeword 𝑖 for 0 ≤ 𝑖 < 𝑆 by 𝑋𝑖 to obtain:

• 𝑋𝑖 ⋅ 𝑐𝑖 𝑋𝑆 = 𝑋𝑖 ⋅ 𝑐𝑖
0 + 𝑋𝑖 ⋅ 0 ⋅ 𝑋 +  … + 𝑋𝑖 ⋅ 0 ⋅ 𝑋𝑠−1 + 𝑋𝑖 ⋅ 𝑐𝑖

1 ⋅ 𝑋𝑠

• Add:

• σ𝑖=0
𝑆−1 𝑋𝑖𝑐𝑖

 (𝑋𝑆)   this is the interleaving result of the codewords.

6



Observation:

• If 𝑐𝑖 𝑋 = 𝑔 𝑋 ⋅ 𝑎𝑖 𝑋 is a codeword in the code generated by 𝑔(𝑋), then:

• 𝑐𝑖
 (𝑋𝑆) is a codeword in the code generated by 𝑔 𝑋𝑆

• 𝑐𝑖
 (𝑋  ) = 𝑔 𝑋 ⋅ 𝑎𝑖(𝑋)

• 𝑐𝑖
 (𝑋𝑆) = 𝑔 𝑋𝑆 ⋅ 𝑎𝑖(𝑋𝑆)

• And so is the lift by 𝑋𝑖, i.e.: 

• 𝑋𝑖 ⋅ 𝑐𝑖
 (𝑋𝑆) = 𝑋𝑖 ⋅ 𝑔 𝑋𝑆 ⋅ 𝑎𝑖(𝑋𝑆) = 𝑔 𝑋𝑆 ⋅ (𝑋𝑖 ⋅ 𝑎𝑖(𝑋𝑆))

• And therefore, so is the sumσ𝑖=0
𝑆−1 𝑋𝑖𝑐𝑖

 (𝑋𝑆)  this is the interleaving result of the 

codewords.

7



• Interleaving of 𝑆 codewords as presented (symbol-wise) can be achieved by 

encoding using the polynomial 𝑔(𝑋𝑆) instead of 𝑔(𝑋).

• If the underlying code has message length 𝑘 and codeword length 𝑛, then:

–  the resulting code is of message length 𝑆 ⋅ 𝑘 and codeword length 𝑆 ⋅ 𝑛

• We only used the fact that the base code was generated by 𝑔 𝑋 , so the 

same could be done for any other code which is generated by a polynomial 

(BCH for example).

Conclusions:

8



• If the underlying code can fix error bursts of length 𝑏 then then:

– The resulting code can fix error bursts of length 𝑆 ⋅ 𝑏 

• Was already proven differently in:

• ran_3dj_01a_230206

• ran_3df_02a_2211

9

https://www.ieee802.org/3/dj/public/23_01/23_0206/ran_3dj_01a_230206.pdf
https://www.ieee802.org/3/df/public/22_11/ran_3df_02a_2211.pdf


(claim, when it comes to data) the following architectures are equivalent:

10

𝑔(𝑥) encoder

S
y
m

b
o
l-

w
is

e
 

in
te

rl
e
a
v
in

g

𝑔(𝑥) encoder

S
 e

n
c
o
d
e
rs

S
y
m

b
o
l-

w
is

e
 

in
te

rl
e
a
v
in

g

𝑔(𝑥𝑆) encoder


	Slide 1: Notes on interleaving of codewords
	Slide 2: Background
	Slide 3: Assumptions
	Slide 4: Spacing:
	Slide 5: Lifting:
	Slide 6: Symbol-wise interleaving in polynomial notation:
	Slide 7: Observation:
	Slide 8
	Slide 9
	Slide 10

