Imperial College

London

Notes on interleaving of codewords

IEEE P802.3dj $200 \mathrm{~Gb} / \mathrm{s}, 400 \mathrm{~Gb} / \mathrm{s}, 800 \mathrm{~Gb} / \mathrm{s}$, and 1.6 Tb/s Ethernet Task Force

Omer S. Sella

Imperial College

London

Background

- Reed-Solomon code introduced in 802.3bj uses 10 bit symbols and a generator polynomial.
- There have been a few presentations on interleaving, but the context for this presentation only requires
- ran 3dj 01a 230206
- ran 3df 02a 2211
- i.e., interleaving that respects the code structure, which is 10 bits for RS FEC as introduced by 802.3bj

Imperial College

London

Assumptions

- Multiple codewords that belong to the same code, i.e., generated by a common polynomial $\mathrm{g}(X)$
- $c_{0}(X)=\sum_{k=0}^{n} c_{0}^{k} X^{k}=g(X) \times a_{0}(X)$
- $c_{S-1}(X)=\sum_{k=0}^{n} c_{S-1}^{k} X^{k}=g(X) \times a_{S-1}(X)$
- Interleaving of one symbol from each codeword at a time, so:
- $c_{0}^{0}, c_{1}^{0}, \ldots c_{S-1}^{0}, c_{0}^{1}, c_{1}^{1}, \ldots c_{S-1}^{1}, \ldots$
- Lower script refers to message / codeword index, and upper script refers to index within a message / data

Imperial College

London

Spacing:

- For a polynomial with coefficients $f^{0}, \ldots f^{n}$ (upper script index, not power), i.e.:
- $f(X)=f^{0}+f^{1} X+f^{2} X^{2}+\ldots f^{n} X^{n}=\sum_{k=0}^{n} f^{k} X^{k}$
- Inserting $S-1$ zero coefficients between existing coefficients, i.e.:
- $f^{0}+0 \cdot X+\ldots+0 \cdot X^{S-1}+f^{1} X^{S}+0 \cdot X^{S+1} \ldots$
- Is obtained through a change of variable $X \rightarrow X^{S}$, i.e.:
- $f^{0}+0 \cdot X+\ldots+0 \cdot X^{S-1}+f^{1} X^{S}+0 \cdot X^{S+1} \ldots=f\left(X^{S}\right)$
- Replacing X with X^{s}

Imperial College

London

Lifting:

- For a polynomial with coefficients $f^{0}, \ldots f^{n}$ (upper script index, not power), i.e.:
- $f(X)=f^{0}+f^{1} X+f^{2} X^{2}+\ldots f^{n} X^{n}=\sum_{k=0}^{n} f^{k} X^{k}$
- Lifting by T i.e.:
- $f^{0} \cdot X^{T}+f^{1} X^{T+1}+\cdots$
- Is obtained by multiplying $f(X)$ by X^{T}, i.e.:
- $X^{T} \cdot f(X)$

Imperial College

London

Symbol-wise interleaving in polynomial notation:

- Start with $0 \leq i<S$ codewords:
- $c_{i}(X)=c_{i}^{0}+c_{i}^{1} X+c_{i}^{2} X^{2}+\ldots c_{i}^{n} X^{n} c_{0}\left(X^{n-1}\right)=\sum_{k=0}^{n} c_{0}^{k} X^{(n-1)^{k}}$
- Introduce spacing between symbols, by insertion of $(s-1)$ zeros:
- $c_{i}(X) \rightarrow c_{i}\left(X^{s}\right)=c_{i}^{0}+0 \cdot X+\ldots+0 \cdot X^{s-1}+c_{i}^{1} \cdot X^{s}$
- (same change of variable for all)
- Now lift codeword i for $0 \leq i<S$ by X^{i} to obtain:
- $X^{i} \cdot c_{i}\left(X^{S}\right)=X^{i} \cdot c_{i}^{0}+X^{i} \cdot 0 \cdot X+\ldots+X^{i} \cdot 0 \cdot X^{s-1}+X^{i} \cdot c_{i}^{1} \cdot X^{s}$
- Add:
- $\quad \sum_{i=0}^{S-1} X^{i} c_{i}\left(X^{S}\right) \leftarrow$ this is the interleaving result of the codewords.

Imperial College

London

Observation:

- If $c_{i}(X)=g(X) \cdot a_{i}(X)$ is a codeword in the code generated by $g(X)$, then:
- $c_{i}\left(X^{S}\right)$ is a codeword in the code generated by $g\left(X^{S}\right)$
- $c_{i}(X)=g(X) \cdot a_{i}(X)$
- $c_{i}\left(X^{S}\right)=g\left(X^{S}\right) \cdot a_{i}\left(X^{S}\right)$
- And so is the lift by X^{i}, i.e.:
- $X^{i} \cdot c_{i}\left(X^{S}\right)=X^{i} \cdot g\left(X^{S}\right) \cdot a_{i}\left(X^{S}\right)=g\left(X^{S}\right) \cdot\left(X^{i} \cdot a_{i}\left(X^{S}\right)\right)$
- And therefore, so is the $\operatorname{sum} \sum_{i=0}^{S-1} X^{i} c_{i}\left(X^{S}\right) \leftarrow$ this is the interleaving result of the codewords.

Imperial College

London

Conclusions:

- Interleaving of S codewords as presented (symbol-wise) can be achieved by encoding using the polynomial $g\left(X^{S}\right)$ instead of $g(X)$.
- If the underlying code has message length k and codeword length n, then:
- the resulting code is of message length $S \cdot k$ and codeword length $S \cdot n$
- We only used the fact that the base code was generated by $g(X)$, so the same could be done for any other code which is generated by a polynomial (BCH for example).

Imperial College

London

- If the underlying code can fix error bursts of length b then then:
- The resulting code can fix error bursts of length $S \cdot b$
- Was already proven differently in:
- ran 3dj 01a 230206
- ran 3df 02a 2211

Imperial College

London

(claim, when it comes to data) the following architectures are equivalent:

