Addressing PTP timestamp accuracy for 800GBASE-ER1 with an 800GMII Extender

Gary Nicholl, Mike Sluyski - Cisco Ulf Parkholm - Ericsson Xiang He - Huawei Dave Ofelt - Juniper Andras Dekoos - Microchip Tom Huber - Nokia

IEEE P802.3dj Task Force Joint Logic & Optics Ad hoc, 11 April 2024

Supporters

- Jerry Pepper Keysight
- Peter Sinn Alphawave
- Eugene Opasnick Broadcom
- TBA (your name could be here!)

References

Recommendation ITU-T G.8273/Y.1368 - Framework of phase and time clocks (06/2023). <u>https://www.itu.int/rec/T-REC-G.8273/en</u>

IEEE 1588-2019 – Standard for a Precision Clock Synchronization Protocol for Network Measurement and Control Systems. <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9120376</u>

IEEE 802.3cx; Improving PTP Timestamping Accuracy on Ethernet Interfaces: <u>https://www.ieee802.org/3/ad_hoc/ngrates/public/calls/19_0702/tse_nea_01_190702.pdf</u>

IEEE P802.3df: Incoming: MOPA: Time synchronization error in PTP networks. https://www.ieee802.org/3/minutes/nov23/incoming/MOPA_to_IEEE_802p3_231102_Red acted.pdf

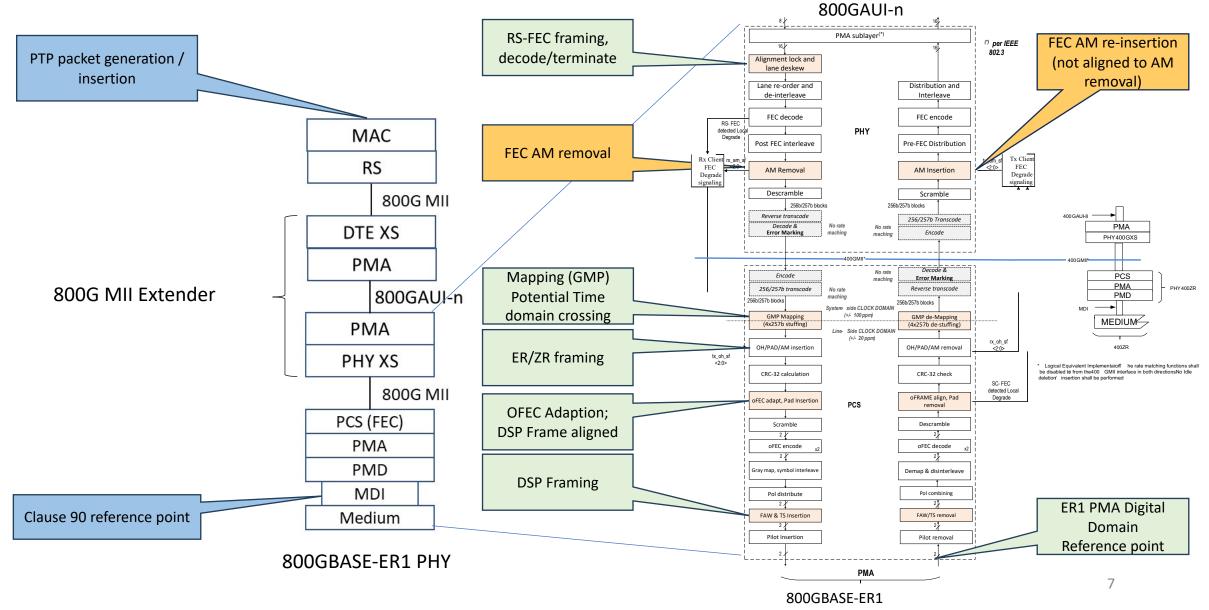
Updated logic baseline for an 800GbE coherent PHY based on oFEC/C-band. <u>https://grouper.ieee.org/groups/802/3/dj/public/23_07/nicholl_3dj_02a_2307.pdf</u>

Consideration of timestamp accuracy with MII-extender in coherent 800GBASE-ER1

https://www.ieee802.org/3/dj/public/23_11/parkholm_3dj_01_2311.pdf

Introduction

- PTP accuracy is becoming more important in a broader set of networks
 - Reference liaison letter from MOPA: <u>https://www.ieee802.org/3/minutes/nov23/incoming/MOPA_to_IEEE_802p3</u> <u>231102_Redacted.pdf</u>
- Ethernet PHYs, including those being developed within 802.3dj, can address timestamping accuracy by following Clause 90. The exception to this is the currently adopted 800GBASE-ER1 baseline with an 800GMII Extender (at either end).
- This contribution proposes an update to the current 800GBASE-ER1 baseline to address this limitation.


Problem statement

- In addition to the usual need for very careful design to achieve high PTP accuracy, 800GBASE-ER1 when used with an 800GMII Extender has an architectural constraint that limits the achievable accuracy (even after using Clause 90 compensation):
 - In the transmit path AMs are removed before mapping the Ethernet symbols into the GMP frame
 - In the receive path, after Ethernet symbols are de-mapped from the GMP frame, AMs are then re-inserted at some random location
 - This changes the relationship between packets and introduces timestamping errors
- Analysis has shown that the insertion/removal of the Alignment Mechanism (AM) fields can affect c|TE| in a measurable way (2.4 nS@ 800G).

Solution overview

- A solution is proposed that ensures AMs are re-inserted in the same positions by the receive 800GMII Extender, relative to whether they were removed by the transmit 800GMII Extender.
- This preserves the Host-to-Host timing relationship of the underlying PTP packet across the 800GBASE-ER1 link.

800GBASE-ER1 Architecture with 800GMII Extender

Proposal – Mark AM position using GMP extender (JC9-JC7) OH bytes.

		Bytes																						
Frame	e MFAS	1	2	3	4	5	6	7	8	9	10	11	12		13		26	2	27 2	28	29		40	
1	xxxxx000	MFAS	STAT	GID	GID	GID RE	IID		MA	P		C	RC			FCC1		0	SMC/RE	S				
2	xxxxx001	MFAS	STAT	AVAIL	RES	JC4	JC1		MA	P		C	RC			FCC1			RES					
3	xxxxx010	MFAS	STAT	JC7	JC8	JC5	JC2		MA	P		C	RC			FCC1			RES					
4	xxxxx011	MFAS	STAT		JC9	JC6	JC3		MA	P		C	RC			FCC1			RES			RES		
5	xxxxx100	MFAS	STAT			MSI[x]	PT		MA	P		C	RC			FCC1			RES			NL0		
6	xxxxx101	MFAS	STAT		ES	JC4	JC1		MA	P		C	RC			FCC1			RES					
7	xxxxx110	MFAS	STAT	JC7	JC8	JC5	762		MA			C	RC			FCC1			RES					
8	xxxxx111	MFAS	STAT	CSTAT	JC9	JC6	JC3	\frown	MA	P		C	RC			FCC1			RES					l
			\bot	\setminus	\				$\overline{\ }$															
			V		\backslash			`												C	verl	head Fi	eld	800G BASE-ER1
					_\			\mathbf{i}														MFAS		Yes
1	2 3	4 5		7 8							Г	1 2	2 3	4	5	6	7	8			ST	AT-RPF	•	Yes
RPF MNT RES PORT											STAT-MNT				Yes									
	Link status overhead MSI overhead										STAT-LD				Yes									
	1	2 3	3 4	5	6	7	8			1	2	3	4	5	6	7	8				ST	AT-RD		Yes
	CSF	 M			RES	RD	LD		JC1	C1	C2	C3	C4	C5	C6	C7	C8				STA	T-SPAF	RE	Yes
	L3F								JC2		C10			C13	C14	11	DI				ST	AT-RES	;	Yes
Client status overhead JC2 C9 C10 C11 C12 C13 C14 II DI JC3 CRC8											GID				Yes									
										RES – row 0, byte 5				No										
JC4 RES D1 D2 D3										OSMC/RES			S	No										
									JC5			RES			D4	D5	RES					RES		No
									JC6			RES				CRC3						CRC		Yes

MAP

CSTAT

IID

Yes

Yes

Yes

Proposed GMP extensions for use in AM synchronization

GMP and Tributary OH fields

FlexO-x information Structure OH defined by ITU-T G.709.1 to carry various mapped payloads

AM Synchronization Mechanisms

- JC9-JC7 (MSB-LSB) bytes can be used to provide a mechanism (16-counter) to transmit phase information of the Alignment Marker field (AM) across the 800GBASE-ER1 link. The counter tracks the number of valid (non-stuff) 4 x 257b data blocks transferred between AMs.
 - Purpose of the counter is to convey the "Start/End" of the 800GE Reed Solomon Block transfer.
 - For 800G there are 8192 (163840 x 257b blocks) 514b code words between AM marked RS coded blocks.
 - GMP stuffing is done in 4 x 257b blocks.
 - Counter increments for each valid (non-stuff) 4 x 257b block mapped into transmit container. The value in J7-J9 corresponds to the value of the counter on the first 4 x 257-bit payload block of the ZR/FlexO-8e multiframe that the J7-J9 bytes are located in.
 - Count value is initialized to zero by the TX GMP mapper, aligned to the removed AM fields. It
 increments every 4 x 257b valid data block. The Max Modulo is the expected end of the 4 x 257b valid
 data for the RS AM marked interface. RX de-mapper keeps equivalent RX counter and synchronizes to
 JC9-JC7 signals.
 - AM are inserted between the payload block where the counter equals 40957 and the payload block where the counter equals 0.

Host Rate	Code Words/AM	257-bit	800G Valid Data						
	Block	blocks/AM	Counter (MAX modulo)						
800G	8192	163840	40960						

AM Synchronization

 The purpose of the Counter is to convey the TX_START/END (Point when AM removed at TX mapper) to RX_START/END (Point where AM insertion is required in RX de-mapper)

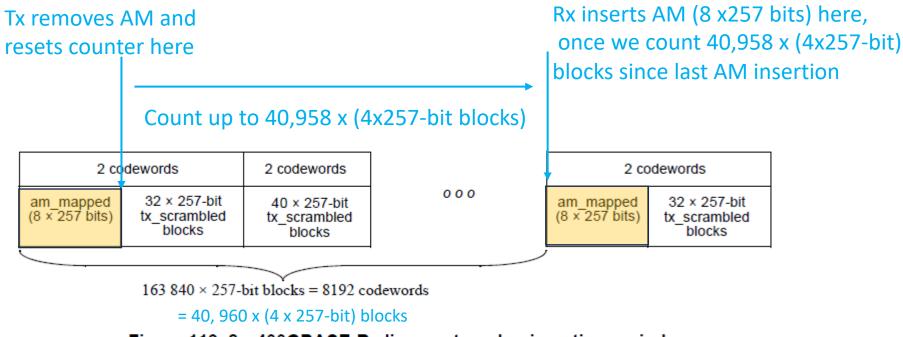


Figure 119–8—400GBASE-R alignment marker insertion period

Summary

- A potential issue was identified related to timestamping accuracy when using an 800GBASE-ER1 PHY with an 800GMII Extender, which is not adequately compensated for by Clause 90.
- This contribution proposes a method to mark the position where the Alignment Markers (AM) are removed in the transmit 800GMII Extender and carry this information over the 800BASE-ER1 link such that the receive 800GMII Extender can re-insert the AMs in the same location from which they were removed.
- This optional mechanism would allow an implementation choice for 800GBASE-ER1 that could comply with the intent of the "Note" in 90.7.2 (referenced in our response to the MPOA liaison letter) and essentially brings 800GBASE-ER1 into line with the other 802.3dj PHYs in this regard.
- Note: the same solution is applicable to 800GBASE-ER1-20

Thanks !