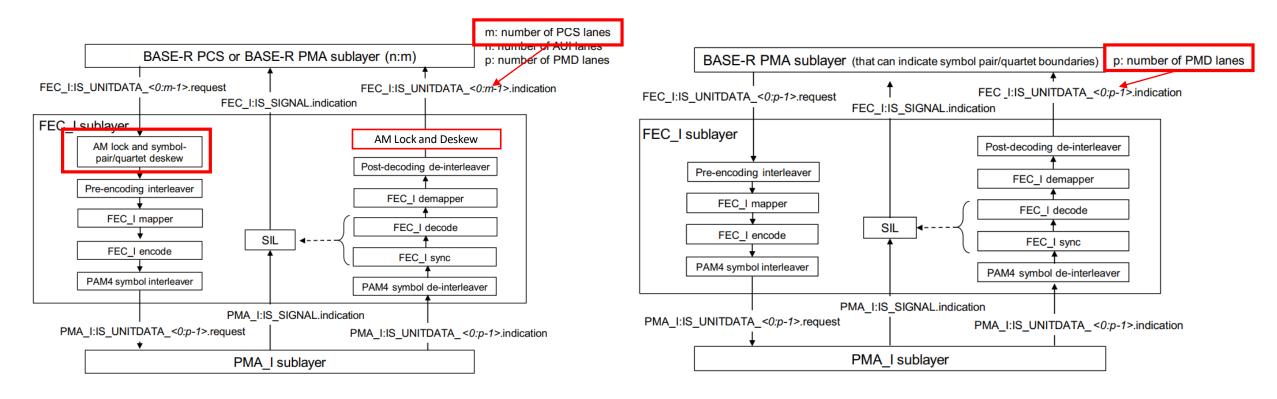
FEC_I Sublayer Architecture Proposal for Type 2 PHYs

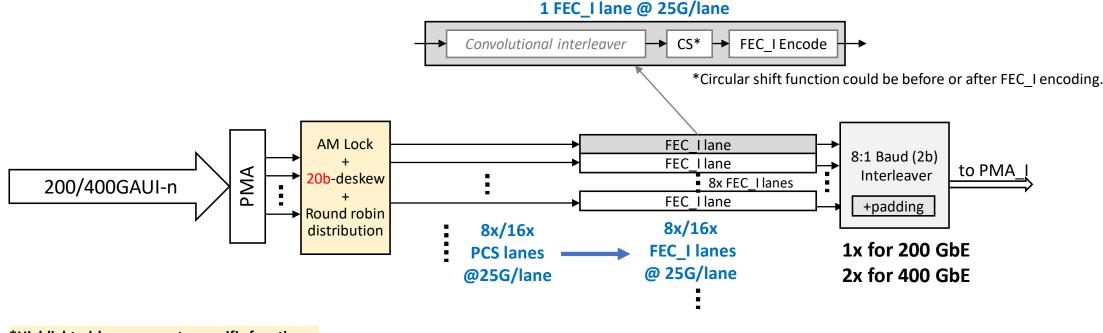
Xiang He, Hao Ren Huawei Technologies

Contributors

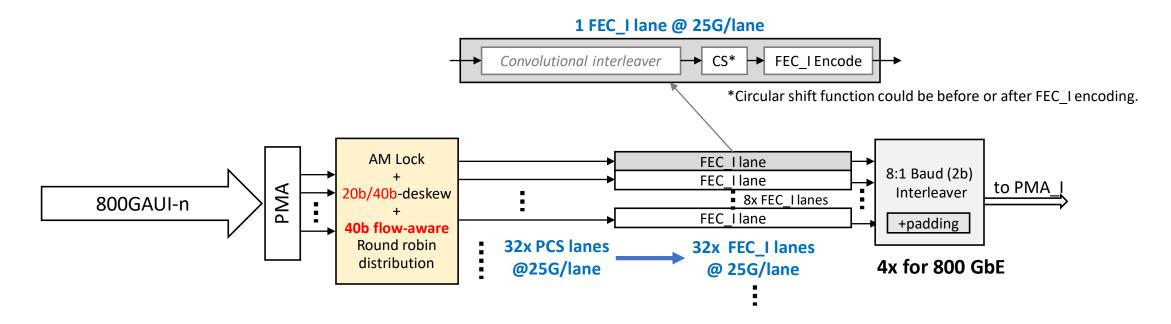

- Kechao Huang, Huawei
- Xiaoling Yang, Huawei

Introduction

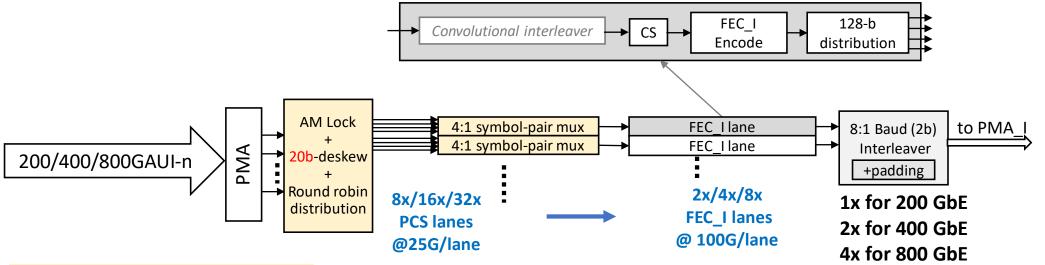
- Type 2 PHY/FEC scheme has been adopted with Hamming(128,120) as the inner FEC.
 - See parthasarathy 3dj 02a 2303, and motions 3dfdj 2303.
 - Detailed design regarding convolutional interleaver and FEC lane rates are TBD.
- Symbol-pair muxing has been adopted for 200G/lane AUIs.
 - See ran_3dj_01a_2303, and motions_3dfdj_2303.
- Convolutional interleaver has been proposed to randomize errors from inner FEC.
 - See patra 3dj 01b 2303.pdf, huang_3df_01a_2211 and he 3dj 01a_230206.pdf.
 - Three different lane rates were proposed: 25G/lane, 100G/lane and 200G/lane.
 - The convolutional interleaver should be avoided for shorter PMDs due to high latency.
 - See he 3dj 02a 230206, dawe 3dj 01a 2303.
 - Latency impact has been analyzed in brown 3dj optx 01b 230413 and brown 3dj elec 01 230420.
- This presentation focuses on FEC_I lane rates, and recommend to use 200G/lane design.
 - Convolutional interleaver in the following slides could be excluded if not needed.


Architecture Overview

- The three FEC lane designs can be viewed as two main options, one has PCS lane based design, and the other has PMA/PMD lane based design.
 - Both options have exactly the same performance in terms of FEC gain.
 - Both options have the same similar number of bits storage for convolutional interleaver if used.
 - Using 25G/lane + 100G/lane design will result in 5.5% more bit storage than unified 200G/lane design.


25G/lane Design – 200 GbE and 400 GbE and 800 GbE

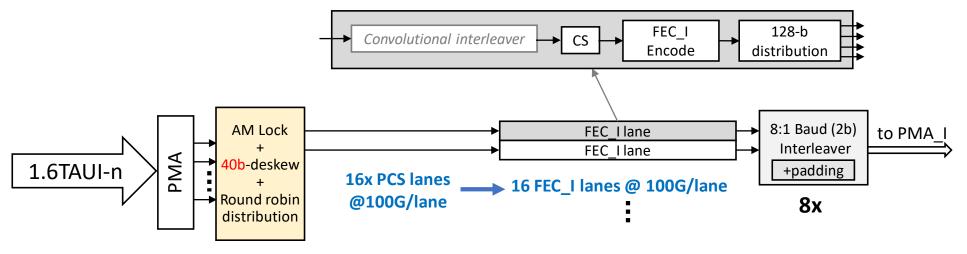
- Data from AUI is de-muxed to PCS lanes first, and deskewed to RS symbol-pair (20b) boundary.
- FEC_I sublayer is based on 25G/lane, as proposed in patra_3dj_02_2305.
 - For 200 GbE and 400 GbE, PCS lane rate is 25G/lane, and each has its own FEC_I lane.
 - 200 GbE and 400 GbE has 2x RS codewords, so deskew and round-robin distribution to each FEC_I lane is based on 20b.
- 8-lane per 200G PMD lane naturally supports 8:1 baud interleaver.


25G/lane Design – 800 GbE

- Data from AUI is de-muxed to PCS lanes first, and deskewed to RS symbol-pair (20b) boundary.
- FEC_I sublayer is based on 25G/lane, as proposed in patra_3dj_02_2305.
 - For 800 GbE, PCS lane rate is 25G/lane, but FEC_I lane is not designed based on each PCS lane.
 - Round-robin distribution to each FEC_I lane is based on 40b blocks, and has to maintain the 2-flow restrictions.
- 8-lane per 200G PMD lane naturally supports 8:1 baud interleaver.

100G/lane Design – 200 GbE, 400 GbE and 800 GbE

- Data from AUI is de-muxed to PCS lanes first, and deskewed to RS symbol-pair (20b) boundary.
- FEC_I sublayer is based on 100G/lane.
 - For 200/400/800 GbE, a 4:1 symbol-pair mux is needed for each FEC_I lane, and it need to be "flow aware".
- 100G/lane design could also support 8:1 (or higher ratio) post-encoding baud interleaver.
 - Circular shift function could be before or after FEC_I encoding.
 - Using single lane "CS + FEC_I encode", aligned with patra_3dj_optx_01_230427.
 - "CS" logic is different between the two FEC_I lanes within a 8:1 baud-interleaved group.

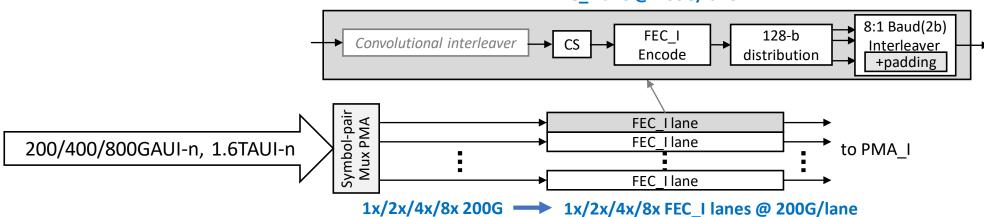


1 FEC_I lane @ 100G/lane

*Highlighted boxes are rate-specific functions.

100G/lane Design – 1.6 TbE

- Data from AUI is de-muxed to PCS lanes first, and deskewed to RS symbol-quartet (40b) boundary.
- FEC_I sublayer is based on 100G/lane.
 - For 1.6 TbE, each FEC_I lane takes the 100G/lane PCS input directly.
- 100G/lane design could also support 8:1 (or higher ratio) post-encoding baud interleaver.
 - Circular shift function could be before or after FEC_I encoding.
 - Using single lane "CS + FEC_I encode", aligned with <u>patra_3dj_optx_01_230427</u>.
 - "CS" logic is different between the two FEC_I lanes within a 8:1 baud-interleaved group.

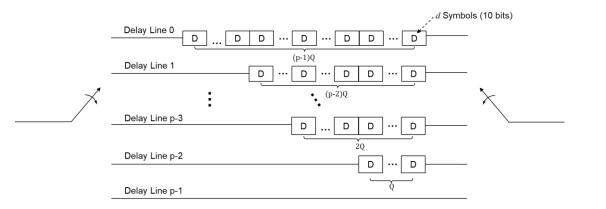


1 FEC_I lane @ 100G/lane

*Highlighted boxes are rate-specific functions.

200G/lane Design – 200 GbE, 400 GbE, 800 GbE and 1.6TbE

- Data from AUI is NOT required to be de-muxed to PCS lanes first.
 - Relying on the symbol-pair muxing PMA functions to establish FEC_I lane mapping.
 - The PMA cannot be an n:n retiming PMA because convolutional interleavers require to know the RS symbol boundaries.
- Maximizing the common functional blocks across different rates.
- 200G/lane design could also support 8:1 (or higher ratio) post-encoding baud interleaver.
 - Circular shift function could be before or after FEC_I encoding.



1 FEC_I lane @ 200G/lane

*No rate-specific functions.

200G/lane Convolutional Interleaver Design

- 200G/lane FEC_I design could utilize the same design blocks across different rates.
- 200G/lane convolutional interleaver design has lower latency for most cases.
- For latency sensitive applications, convolutional interleavers should not be used.

Proposal	PCS	d (RS symbol)	Р	Q	Depth	Latency ns	FEC_I Lane Rate
<u>patra_3dj_optx_01_230427</u>	1.6TE	4	3	11	12x RS	24.85	100G/lane
	800GE	4	3	6	12x RS	54.21	25G/lane
	400GE	2	6	6	12x RS	135.53	
	200GE	2	6	12	12x RS	271.06	
<u>he_3dj_optx_01_230427</u>	1.6TE	4	3	23	12x RS	25.98	200G/lane
	800GE	4	3	45	12x RS	50.82	
	400GE	2	6	46	12x RS	129.88	
	200GE	2	6	91	12x RS	256.94	

Hardware Resource Comparison

Proposal	Lane Ra	ite	Convo. Interleaver	PMA Demux + Distribution	Hamming Encoding + Decoding Area
	200/400/800GE	1.6TE	Area	Area	
patra_3dj_02_2305	25G/lane	100G/lane	1.5xA	~2xB	С
barakatain_3dj_01a_2303 & he_3dj_01_2303	100G/la	ne	Α	В	С
he_3dj_01_2305	200G/la	ne	Α	None	С

Notes:

- A is tightly related to FEC_I lane rate selection, and will increase if more flavors if interleaver is used.
- C is algorithm dependent, and is slightly smaller than A for typical implementation like Chase-II.
- B is negligible compared to A or C.
- Overall patra_3dj will consume 28% more chip area (gate counts) than he_3dj for the whole inner FEC Tx + Rx.

Summary

- The FEC_I lane rate does not affect the FEC performance.
 - However it needs to be defined clearly to ensure interop.
- If using different FEC_I lane rate for different rates, the module cannot support rate agnostic breakout.
- FEC_I sublayer designing based on 200G/lane PMA lanes enables unified design across all rates that supports 200G/lane optical PMDs.
 - With a single FEC_I sublayer defined, it could be used to define all Ethernet rates using 200G/lane optics.
 - When the convolutional interleaver is bypassed, it could support rate agnostic breakout.

Thank you!