1.6TbE alignment marker characteristics

Ryan Wong (Broadcom) June, 2023 IEEE 802.3dj

Introduction

- Baseline Wander
 - definition: the instantaneous offset (in %) in the signal generated by AC coupling at the Baud/10000
 - see p.4 of anslow_01_1016_logic
- Clock Content
 - definition: create a function which is a 1 for a transition and a 0 for no transition and then filter the resulting sequence with a corner frequency of Baud/13281

- see p.5 of anslow 01 1016 logic

All transitions

1.6TbE Alignment Markers

• From adopted baseline gustlin 3dj 01b 230206

2

2

Alignment Marker Insertion Markers inserted at consecutive 257b blocks across both 800G flows Uses 16 PCSL Total size of markers is same as 400GbE Increased spacing between markers to maintain frequency of arrival. AM group size Spacing #PCS AM Spacing **#PCSL** GbE (x 257b) (in CWs) flows (in 257b per flow) 200 8 4 4k 1 81,920 400 16 8 8k 1 163,840

16k

32k

Source: IEEE Std 802.3-2018

Alignment Marker Encoding

• With 16 PCSL

32

16

800

1600

- CM0-CM5 and UP0-UP2 are unchanged from 400GbE CL119
- UM0-UM5 are inverted from 400GbE

16

8

- Resulting UMs differ from 400GbE and 800GbE
- Clock Content and Baseline Wander Analysis TBD
- UP and UM values can be adjusted if necessary
- Open issue: How to form the AMs in a coherent way so they appear correctly on physical lanes

PCS Lane #	Encoding														
	CM0	CM1	CM2	UP0	СМЗ	CM4	CM5	UP1	UMO	UM1	UM2	UP2	UM3	UM4	U
0	0x9A	0x4A	0x26	0xB6	0x65	0xB5	0xD9	0xD9	OxFE	0x8E	0x0C	0x26	0x01	0x71	0
1	0x9A	0x4A	0x26	0x04	0x65	0xB5	0xD9	0x67	0xA5	0x21	0x81	0x98	0x5A	0xDE	0:
2	0x9A	0x4A	0x26	0x46	0x65	0xB5	0xD9	OxFE	0xC1	0x0C	0xA9	0x01	0x3E	0xF3	0:
3	0x9A	0x4A	0x26	0x5A	0x65	0xB5	0xD9	0x84	0x79	0x7F	0x2F	0x7B	0x86	0x80	0
4	0x9A	0x4A	0x26	OxE1	0x65	0xB5	0xD9	0x19	0xD5	0xAE	0x0D	0xE6	0x2A	0x51	0:
5	0x9A	0x4A	0x26	0xF2	0x65	0xB5	0xD9	Ox4E	0xED	0xB0	0x2E	0xB1	0x12	0x4F	0
6	0x9A	0x4A	0x26	0x3D	0x65	0xB5	0xD9	OxEE	0xBD	0x63	0x5E	0x11	0x42	0x9C	0
7	0x9A	0x4A	0x26	0x22	0x65	0xB5	0xD9	0x32	0x29	0x89	0xA4	0xCD	0xD6	0x76	0
8	0x9A	0x4A	0x26	0x60	0x65	0xB5	0xD9	0x9F	0x1E	0x8C	0x8A	0x60	0xE1	0x73	0
9	0x9A	0x4A	0x26	Ox6B	0x65	0xB5	0xD9	0xA2	0x8E	0x3B	0xC3	0x5D	0x71	0xC4	0
10	0x9A	0x4A	0x26	OxFA	0x65	0xB5	0xD9	0x04	0x6A	0x14	0x27	OxFB	0x95	OxEB	0
11	0x9A	0x4A	0x26	Ox6C	0x65	0xB5	0xD9	0x71	0xDD	0x99	0xC7	0x8E	0x22	0x66	0
12	0x9A	0x4A	0x26	0x18	0x65	0xB5	0xD9	0x5B	0x5D	0x09	0x6A	0xA4	0xA2	0xF6	0
13	0x9A	0x4A	0x26	0x14	0x65	0xB5	0xD9	0xCC	0xCE	0x68	0x3C	0x33	0x31	0x97	0
14	0x9A	0x4A	0x26	0xD0	0x65	0xB5	0xD9	0xB1	0x35	0x04	0x59	Ox4E	0xCA	OxFB	0
15	0x9A	0x4A	0x26	0xB4	0x65	0xB5	0xD9	0x56	0x59	0x45	0x86	0xA9	0xA6	0xBA	0

Note: in table above, bolded text indicates inverted values from CL 119 AM values

1.6TbE AM Insertion

• From PCS lane info and AM insertion opsasnick 3dj 01a 2303

1.6TbE AM pattern across PCS lanes

- · AM data is eight 257-bit blocks
 - 4x257b inserted by each flow
- 120-bit AM marker per PCS lane

In figure to right:

- · Symbols 0-11 of each lane are defined AM values
- 257-bit AM blocks inserted by Flow-0 (CW-A and CW-B) highlighted in color
- Padding in PCSLs 0-3, Symbols 12-15
 - 68-bits padding in Flow-0
 - 65-bits padding + 3-bit status in Flow-1
- PRBS9 padding data in each flow is independently generated per flow.
 - Each flow should use different seeds for the PRBS9 pattern
- TX AM status Field (tx_am_sf<2:0>)
 Only at end of padding in Flow-1
 - Only at end of padding in Fic
 Status is based on all 4 CWs

Flow-0 257b blocks PRBS9 Pad Resumption of 257-bit blocks 3-bit Status am_mapped 10-bit symbol index, k PCS lane, i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ABCDABCDABC ABCDABCDABC 1 ABCDABCDABC ABCDABCDABC ABCDABC 8 ABCDABCDAB 10 ABCDABCDA 11 ABCDABCDABC 12 ABCDABCDABCI 13 ABCDABCDAB 14 ABCDABCDABCD 15 A B C D A B C D A B C

1.6TBASE-R Alignment marking mapping to PCS lanes

1.6TbE AM Insertion

- Each flow requires a unique insertion pattern definition to make the AMs appear on the PCS lanes correctly since all 4 CWs are inserted into each PCS lane.
- For each of the sixteen 120-bit AMs:
 - AM bits 0-19, 40-59 and 80-99 come from Flow-0
 - AM bits 20-39, 60-79 and 100-119 come from Flow-1
 - Plus additional padding is added to align to a 257b boundary

1.6TbE Symbol-quartet multiplexing

• From PMAs with 200G signaling ran 3dj 01a 2303

Symbol-quartet multiplexing illustration PMA(16:8) – 1.6T PHYs

(1 out of 8 lanes illustrated)

Spq denotes the 10-bit symbol with index **q** on the PCSL with index **p** within the set of 2 PCSLs, after alignment to 40-bit boundary relative to the AM

Simulations

- All sixteen 1.6TbE scrambled idle 100Gb/s lanes were analyzed to find the worst cases for Baseline Wander and Clock Content after Gray coding to PAM4 symbols.
- All possible 2:1 combinations of PCS lanes for symbol quarter multiplexing for 1.6TbE scrambled idle 200Gb/s lanes were analyzed to find the worst cases for Baseline Wander and Clock Content after Gray coding to PAM4 symbols. These searches included lane delays of (-160, -120, -80, -40, 0, +40, +80, +120, +160) bits, which are multiples of 40 bits.

Baseline Wander, 100G lanes, 1.6T markers

7

Baseline Wander, 200G lanes, 1.6T markers

Clock Content, 100G lanes, 1.6T markers

Clock Content, 200G lanes, 1.6T markers

Summary

- The baseline wander and clock content for the 1.6TbE alignment markers show a slightly worse "shoulder" on some combinations, but they remain within the "mask" obtained by the PRBS31Q test pattern.
- No shift of clock content, i.e. reduction in PAM4 transition density, were found.

THANK YOU