Performance Evaluation of Inner FEC Synchronization Methods

Hao Ren, Xiang He Huawei Technologies

Introduction

- Binary(128,120) code has been adopted as inner FEC code for 200G/lane optical PMDs, then a method to find the FEC codeword boundaries is necessary.
- Two synchronization methods, inner FEC self-sync and frame sequence(FS) sync, were proposed.
 - Self-sync uses the intrinsic feature of inner FEC code, as proposed in <u>he 3dj 03b 2307</u>.
 - FS sync uses the inserted fixed pattern, alignment marker, as proposed in <u>farhood 3dj 01a 230206</u>, <u>barakatain 3dj 01a 2303</u>.
- This presentation shows performance evaluation of self-sync and FS sync, with burst error considered, and proposes self-sync as inner FEC codeword synchronization method.

Performance evaluation of synchronization methods

- The purpose of synchronization is to find the boundaries of codewords for proper decoding on the receiving side, and to maintain the correct boundaries during normal operation.
- Performance of synchronization methods can be evaluated with the following 4 parameters:

	Parameters	Description
1	Mean time to false-lock (MTTFL)	Mean time that it locks to a wrong position. Higher is better. Should never happen. (longer than AOU)
2	Mean time to false-unlock (MTTFU)	Mean time that the lock breaks during normal operation. Higher is better. Should never happen. (longer than AOU)
3	Mean time to lock (MTTL)	Mean time to find the codeword boundary on a bit stream. Lower is better.
4	Mean time to unlock (MTTU)	Mean time to drop sync when needs to. Lower is better.

- In the following slides, we will evaluate FS sync and self-sync based on these 4 parameters.
 - Various potential BERs
 - AWGN channel, burst channel (DFE based model)
 - Different padding insertion methods

Padding insertion methods

- Two padding insertion methods were proposed as in <u>farhood 3dj 01a 230206</u> and <u>rechtman 3dj 01a 2305</u>.
- For each padding insertion method, both self-sync and FS sync can be used.
 - FS sync is better to be performed on 200G/lane data stream.
 - Sync probability is almost the same for the two insertion methods, but the 4 parameters will be different due to different insertion intervals.
 - Self-sync is performed on deinterleaved codeword streams. Padding can be located after codeword sync is obtained.
 - Sync probability is the same for the two insertion methods, so are the 4 parameters.
- Both padding insertion methods are analyzed in this presentation.

3x CWs padding for every 3264 CWs

8x CWs (interleaved) padding for every 8704 CWs

From farhood 3dj 01a 230206

FS sync method

- FS sync method reuses CM portion of 400G PCS AM with similar locking approach.
 - 48-bit FS (12 half-byte nibbles), as proposed in patra 3dj 01b 2303 and huang 3dj 01 2307.
 - If *t* or more nibbles in the candidate block match, it is recognized as a valid FS.
 - Lock state established when there are **x** successive valid FS.
 - Unlock when there are **y** successive invalid FS.
- FS sync is performed on the 200G/lane data stream.

FS sync performance calculation with AWGN channel

- Calculation of 4 parameters :
 - $p_w = P(a \text{ valid FS at a wrong location}) = \sum_{i=t}^{12} {\binom{12}{i}} * p_0^i * (1-p_0)^{12-i}$, with $p_0 = (0.5)^4$.
 - $p_c = P(\text{an invalid FS at a correct location}) = \sum_{i=0}^{t-1} {\binom{12}{i}} * p_1^i * (1-p_1)^{12-i}$, with $p_1 = (1 \text{BER})^4$, where BER indicates channel errors.
 - $P_{fl} = P(\text{false-lock}) = Q * P(\text{false lock at a wrong location}) = Q * p_w^x$.
 - Consider worst case when lock process starts from the next PAM4 symbol of correct location, then Q = L/2–1 wrong locations must be checked, where L is FS interval[†].
 - Mean time to false-lock $MTTFL = x * L/P_{fl} / 226.875e9 / (3600*24*365)$ (years).
 - $P_{fu} = \mathsf{P}(\mathsf{false-unlock}) = p_c^{\mathcal{Y}}.$
 - Mean time to false-unlock $MTTFU = (y 1) * L/P_{fu}/226.875e9/(3600 * 24 * 365)$ (years).
 - $P_{lf} = P(\text{fail to lock at the correct location after checking all possible Q positions}) = \sum_{i=0}^{x-1} (1 p_c)^i * p_c$.
 - Mean time to lock $MTTL = x * L/(1 P_{lf})/226.875e9$ (seconds).
 - $P_{uf} = \mathsf{P}(\mathsf{fail to unlock when needs to}) = 1 (1 p_w)^y$.
 - Mean time to unlock $MTTU = (y 1) * L/(1 P_{uf})/226.875e9$ (seconds).

[†] For 3*128 insertion case, L=3267*128. For 8*128 insertion case, L=8712*128.

FS sync with AWGN channel

- Mean time to false-unlock is affected by channel BER, while mean time to false-lock is not.
- The sync method needs to work well within a range of BER.
 - We consider the BER range from 2E-3 to 5E-3 based on different "bypass" modes discussed previously.
- A proper choice is t = 9, x = 4, y = 6.
 - For simplification, table below is based on 3x128 padding insertion. (MTTX Values for 8x128 padding insertion is 8/3 times higher)

three hold t	Mean time to false-lock (years)							
intestioid i	x = 2	x = 3	x = 4	x = 5	x = 6	x = 7		
10	1.96E+02	5.51E+12	1.37E+23	3.22E+33	7.23E+43	1.58E+54		
9	7.72E-02	4.30E+07	2.13E+16	9.89E+24	4.41E+33	1.91E+42		
8	6.64E-05	1.09E+03	1.58E+10	2.15E+17	2.82E+24	3.58E+31		
7	1.10E-07	7.58E-02	4.53E+04	2.54E+10	1.37E+16	7.17E+21		

For $t = 9$, $x = 4$, $y = 6$. AWGN channel					
Parameters	BER = 3E-3	BER = 5E-3			
Mean time to false-lock (years)	2.13E+16	2.13E+16			
Mean time to false-unlock (years)	4.41E+17	3.05E+12			
Mean time to lock (µs)	7.4	7.4			
Mean time to unlock (µs)	9.2	9.2			

total BER	threshold t	Mean time to false-unlock (years)						
	threshold t	y = 3	y = 4	y = 5	y = 6	y = 7	y = 8	
	10	9.88E-02	1.40E+03	1.77E+07	2.09E+11	2.37E+15	2.61E+19	
2 005 02	9	1.69E+04	1.33E+10	9.36E+15	6.14E+21	3.87E+27	2.37E+33	
2.00E-03	8	8.04E+09	4.95E+17	2.70E+25	1.38E+33	6.81E+40	3.26E+48	
	7	9.82E+15	6.45E+25	3.77E+35	2.06E+45	1.08E+55	5.54E+64	
	10	2.82E-03	1.22E+01	4.72E+04	1.70E+08	5.91E+11	1.99E+15	
3 00 - 03	9	1.43E+02	2.31E+07	3.29E+12	4.41E+17	5.67E+22	7.08E+27	
3.00E-03	8	2.01E+07	1.68E+14	1.25E+21	8.69E+27	5.80E+34	3.77E+41	
	7	7.26E+12	4.31E+21	2.28E+30	1.13E+39	5.36E+47	2.48E+56	
	10	2.33E-04	4.40E-01	7.37E+02	1.16E+06	1.75E+09	2.57E+12	
4 005 02	9	5.00E+00	2.62E+05	1.22E+10	5.35E+14	2.24E+19	9.16E+23	
4.002-03	8	2.95E+05	6.03E+11	1.10E+18	1.87E+24	3.05E+30	4.85E+36	
	7	4.47E+10	4.87E+18	4.72E+26	4.28E+34	3.73E+42	3.16E+50	
	10	3.43E-05	3.42E-02	3.03E+01	2.52E+04	2.01E+07	1.56E+10	
5 005 03	9	3.78E-01	8.37E+03	1.65E+08	3.05E+12	5.41E+16	9.34E+20	
5.00E-03	8	1.14E+04	7.87E+09	4.83E+15	2.78E+21	1.54E+27	8.25E+32	
	7	8.81E+08	2.59E+16	6.77E+23	1.66E+31	3.90E+38	8.93E+45	

Similar evaluations were provided in barakatain 3dj 01a 2303.

FS sync with burst channel

- As FS is not protected by the inner FEC or the 8:1 Baud interleaver, the probability p_c (probability of an invalid FS at a correct location) will be affected by burst errors, so MTTFU can be degraded.
 - The results are difficult to calculate but can be quickly evaluated by simulations, as shown below for 3x128b padding insertion.
- For EPF(error propagation factor) > 0.2, MTTFU will be lower than AOU with the chosen t/x/y.
 - Unwanted link interruption during normal operation.
- A larger value of *y* is needed to ensure sufficient MTTFU.
 - y=12 is the minimum number for an acceptable MTTFU with a° EPF=0.75.
 - Leads to more complexity and longer MTTU.
- For 8x128b padding insertion, y = 12 is also required.
 - Values below except for MTTFL can be multiplied by 8/3.

For t = 9, x = 4, y = 12. Burst EPF = 0.75					
Parameters	BER = 3E-3	BER = 5E-3			
Mean time to false-lock (years)	2.13E+16	2.13E+16			
Mean time to false-unlock (years)	1.11E+14	1.84E+11			
Mean time to lock (µs)	7.6	7.7			
Mean time to unlock (µs)	20.3	20.3			

Self-sync method

- Self-sync uses the intrinsic feature of inner FEC code.
 - Perform self-sync on the de-interleaved codeword streams.
 - Steps:
 - Search and Test: Start the search from any candidate position, check N codewords, see if at least n of them are good.
 - If so, go to Validate. If not, shift potential start to next position (PAM4 symbol) and try again.
 - Validate: See if at least *p* in the following *P* codewords are also good.
 - If so, sync established. If not, go back to Search and Test.
 - Monitor and Drop: When there are *m* codewords are invalid in the following *M* codewords, drop sync and restart Search and Test.
- FS pattern comparison using the known codeword boundaries to identify padding.
 - FS pattern comparison can still be performed on the 200G/lane data stream for simpler padding definition.

Self-sync performance calculation with AWGN channel

• Calculation of 4 parameters :

- $p_w = P(a CW \text{ is recognized as a good CW}^{\dagger} \text{ at a wrong location}) = (2)^{-8}$.
- $p_c = P(a CW \text{ is recognized as a good CW}^{\dagger} \text{ at a correct location}) = (1 BER)^{128}$, where BER indicates channel errors.
 - The probability of 2 errors in one PAM4 symbol is negligible, so degradation of XOR encoding is neglected. CWs with >=4 errors are also neglected.
- P(T1) = P(search and test, at least n CWs are good at a wrong location) = $\sum_{i=n}^{N} {N \choose i} * p_w^i * (1 p_w)^{N-i}$.
- P(T2) = P(search and test, less than n CWs are good at a correct location) = $\sum_{i=0}^{n-1} {N \choose i} * p_c^i * (1 p_c)^{N-i}$.
- P(V1) = P(validate, at least p CWs are good at a wrong location) = $\sum_{i=p}^{P} {P \choose i} * p_{w}^{i} * (1 p_{w})^{P-i}$.
- = P(V2) = P(validate, less than p CWs are good at a correct location) = $\sum_{i=0}^{p-1} {p \choose i} * p_c^i * (1 p_c)^{p-i}$.
- $P_{fl} = P(\text{false-lock}) = Q * P(\text{false lock at one wrong location}) = Q * P(T1) * P(V1)$.
 - Consider worst case when lock process starts from the next PAM4 symbol of correct location, then Q = 128/2 1 wrong locations must be checked.
 - Mean time to false-lock $MTTFL = (N+P+1)*128 / P_{fl} / 28.36e9 / (3600*24*365) / 8 (years).$ The last number 8 is for 8*25G.
- $P_{fu} = \mathsf{P}(\mathsf{false-unlock}) = \sum_{i=0}^{M-m} \binom{M}{i} * p_c^i * (1 p_c)^{M-i}.$
 - Mean time to false-unlock $MTTFU = M^{128} / P_{fu} / 28.36e9 / (3600^{24^{3}365}) / 8 (years).$
- = $P_{lf} = P(\text{lock fail at the correct location after checking Q positions}) = P(T2) + (1 P(T2)) * P(V2).$
 - Mean time to lock $MTTL = (N+P+1)*128/(1 P_{lf})/28.36e9$ (seconds).
- $P_{uf} = \mathsf{P}(\mathsf{unlock fail when needs to}) = \sum_{i=M-m+1}^{M} {M \choose i} * p_w^i * (1 p_w)^{M-i}.$
 - **Mean time to unlock** $MTTU = M^{128} / (1 P_{uf}) / 28.36e9$ (seconds)

[†] This includes the probability of an invalid CW skips error checking.

Performance comparison between self-sync and FS sync under AWGN

- MTTFU is affected by channel BER while MTTFL is not.
- The BER range from 2E-3 to 5E-3 is assumed.
- For easier calculation, let N = P = 50, n = p = 13, M = 150, m = 140.
 - Self-sync outperforms FS sync in every parameter.
- Self-sync does not require additional logic due to intrinsic decoding functions.
- Self-sync itself is protocol agnostic, and does not rely on padding content definition.

N = P = 50, n = p = 13, M = 150, m = 140. AWGN channel						
Parameters	BER = 2E-3	BER = 3E-3	3E-3 BER = 4E-3 BER =			
Mean time to false-lock (MTTFL) (years)	6.66E+22	6.66E+22	6.66E+22	6.66E+22		
Mean time to false-unlock (MTTFL) (years)	6.99E+60	1.99E+41	1.86E+28	3.26E+18		
Mean time to lock (MTTL) (µs)	<1	<1	<1	<1		
Mean time to unlock (MTTU) (µs)	<1	<1	<1	<1		

t = 9, x = 4, y = 6. AWGN channel						
Parameters	BER = 2E-3	BER = 3E-3	BER = 4E-3	BER = 5E-3		
Mean time to false-lock (MTTFL) (years)	2.13E+16	2.13E+16	2.13E+16	2.13E+16		
Mean time to false-unlock (MTTFL) (years)	6.14E+21	4.41E+17	5.35E+14	3.05E+12		
Mean time to lock (MTTL) (µs)	7.4	7.4	7.4	7.4		
Mean time to unlock (MTTU) (µs)	9.2	9.2	9.2	9.2		

(Based on 3x128 Padding Insertion)

Self-sync

Self-sync with burst channel

- Even with the Baud interleaver, burst error still affects probability p_c (a codeword is good at a correct location), so MTTFU changes with BER and EPF.
- Self-sync performance will not degrade with burst error when measured BER is limited.
- If 8x128b padding is used, padding CWs do not need special processing.
 - All CWs received can be used for self-sync.

Locating padding after self-sync

- After self-sync is done, padding can be located based on codeword boundaries.
 - Padding can be confirmed by identifying **x** successive valid FS.
 - FS compare is recommended to be performed on 200G data streams to avoid complex definition of padding.
 - $P_{fl} = P(\text{false-lock}) = Q * P(\text{false lock at a wrong location}) = Q * p_w^x$.
 - Due to known codeword boundaries, Q is reduced from L/2-1 to L/128/8-1.
 - The reliability is improved by 500+ times comparing to FS search.
 - MTTFL = $x * L/P_{fl} / 226.875e9 / (3600*24*365)$ (years).
- Once in FS lock state, FS lock monitoring **may** not be needed.
 - The location of FS is always bind to codeword boundary.
 - Maintaining FS lock/unlock state machine could improve robustness and interoperability if one chooses to use FS sync.

Summary

- A self-sync method is proposed for inner FEC.
- FEC codeword boundary detection is inherent, no additional logic is required.
- Self-sync performs better than FS sync in every evaluated aspect.
 - Mean time to false-unlock of FS sync is sensitive to burst errors and decreases sharply with increased EPF.
 - Self-sync performance will not degrade with burst error.
- The self-sync method itself is "protocol agnostic"
 - It does not rely on padding content definition.
 - It could be used for the two different padding insertion proposals.
- FS pattern comparison is still needed to locate padding CWs after self-sync is established.
 - FS pattern comparison is recommended to be performed on the 200G/lane data stream.

Thank you