Baseline CD Values for 800GBASE-LR4

Xiang Liu ${ }^{(1)}$, Qirui Fan ${ }^{(1)}$, John Johnson ${ }^{(2)}$, Roberto Rodes ${ }^{(3)}$, Maxim Kuschnerov ${ }^{(4)}$, Rang-Chen (Ryan) Yu ${ }^{(5)}$, Ernest Muhigana ${ }^{(6)}$, Nobuhiko Kikuchi ${ }^{(7)}$, Frank Chang ${ }^{(8)}$, and Chris Cole ${ }^{(3)}$
${ }^{(1)}$ Huawei Hong Kong Research Center, China; ${ }^{(2)}$ Broadcom, USA; ${ }^{(3)}$ Coherent, USA; ${ }^{(4)}$ Huawei European Research Institute,
Germany; ${ }^{(5)}$ SiFotonics, USA; ${ }^{(6)}$ Lumentum, USA; ${ }^{(7)}$ Hitachi, Japan; ${ }^{(8)}$ Source Photonics, USA.

Introduction

- In the November 2023 IEEE 802 plenary meeting, the baseline proposal for 800GBASE-LR4 (rodes 3dj 01a 2311) was approved, with the chromatic dispersion (CD) values of its four wavelength channels "to be specified once ITU-T statistical data gets available".

Transmitter compliance channel specifications

Dispersion								$\begin{gathered} \text { Max mean } \\ \text { DGD } \end{gathered}$
Lane0		Lane1		Lane2		Lane3		
Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	
TBD	0.8 ps							

CD values to be specified once ITU-T statistical data gets available

- In 3dk effenberger 2311 1, it was mentioned that "ITU-T Q2/15, Q5/15, and Q6/15 have collected data from the eight major fiber manufacturers to better understand these factors", and the probability of having zerodispersion wavelength (ZDW) outside the specified range of [1300 1324]nm could be ~1E-4.
- In this contribution, we present the CD values of the four wavelength channels of 800GBASE-LR4 based on a reasonably conservative ZDW distribution and the statistical distribution of S_{0}, as done in Johnson 3dj 2307.

A reasonable choice of ZDW distribution

1) The natural choice of $Z_{D W}$ mean is the center of [13001324$] n \mathrm{~nm}$, i.e., 1312 nm .
2) Ideally, the six-sigma manufacturing process leads to a sigma of $12 \mathrm{~nm} / 6=2 \mathrm{~nm}$, corresponding to a defect rate of $3.4 \mathrm{E}-6$ (or 3.4 DPMO).
3) However, 3dk_effenberger_2311_1 shows that the defect rate could be as high as $\sim 1 \mathrm{E}-4$, so we have to be more conservative.
4) Assuming a simple Normal Distribution with a very conservative defect rate of $6 \mathrm{E}-4^{*}$ (or 600 DPMO), we have: sigma=3.5nm.
*Here, the defect rate of $6 E-4$ is calculated from erfc((12/3.5)/sqrt(2)), which represents the probability of having ZDW outside the specified range of [1300 1324]nm.
5) So, we could conservatively assume that the ZDW follows Normal Distribution $\mathrm{N}($ mean $=1312 \mathrm{~nm}$, sigma $=3.5 \mathrm{~nm})$.

Analytical evaluation of link CD distribution

We can derive the distribution of link CD at λ using $3^{\text {rd }}$ order Sellmeier equation

$$
D(\lambda)=\frac{\lambda S_{0}}{4}\left[1-\left(\frac{\lambda_{0}}{\lambda}\right)^{4}\right]
$$

where

$$
\begin{aligned}
& \lambda_{0} \sim \mathcal{N}\left(\mu_{\lambda_{0}}, \sigma_{\lambda_{0}}^{2}\right) \text { truncated at } 1300 \mathrm{~nm} \text { and } 1324 \mathrm{~nm} \\
& S_{0} \sim \mathcal{N}\left(\mu_{S_{0}}, \sigma_{S_{0}}^{2}\right) \quad \text { (as suggested in Johnson_3dj_2307) }
\end{aligned}
$$

In the case of cable segmentations,

$$
C D_{M}(\lambda)=\sum_{i=1}^{M} L_{C a b} D_{i}(\lambda) / M
$$

where $L_{C a b}=10 \mathrm{~km}$ for $800 \mathrm{G}-\mathrm{LR} 4$

Numerically, $D(\lambda)$ and $C D_{M}(\lambda)$ are evaluated via Monte Carlo Analysis with 100M 10km-link realizations.

Baseline $C D_{Q}$ values for ($\mathrm{M}=4, \mathrm{Q}=1 \mathrm{E}-4$)

Channel 1		Channel 2		Channel 3		Channel 4	
$\mathrm{CD}_{\text {min }, \mathrm{Q}}$ $@ 1294.53 \mathrm{~nm}$	$\mathrm{CD}_{\text {max }, \mathrm{Q}}$ $@ 1296.59 \mathrm{~nm}$	$\mathrm{CD}_{\text {min }, \mathrm{Q}}$ $@ 1299.02 \mathrm{~nm}$	$\mathrm{CD}_{\text {max }, \mathrm{Q}}$ @1301.09 nm	$\mathrm{CD}_{\text {min }, \mathrm{Q}}$ $@ 1303.54 \mathrm{~nm}$	$\mathrm{CD}_{\text {max }, \mathrm{Q}}$ $@ 1305.63 \mathrm{~nm}$	$\mathrm{CD}_{\text {min }, \mathrm{Q}}$ $@ 1308.09 \mathrm{~nm}$	$\mathrm{CD}_{\text {max }, \mathrm{Q}}$ $@ 1310.19 \mathrm{~nm}$
-20.34	-7.49	-16.42	-3.73	-12.52	0.03	-8.64	3.78

Baseline $C D_{Q}$ values for ($\mathrm{M}=4, \mathrm{Q}=1 \mathrm{E}-3$)

Channel 1		Channel 2		Channel 3		Channel 4	
$\mathrm{CD}_{\text {min }, \mathrm{Q}}$ $@ 1294.53 \mathrm{~nm}$	$\mathrm{CD}_{\text {max }, \mathrm{Q}}$ $@ 1296.59 \mathrm{~nm}$	$\mathrm{CD}_{\text {min }, \mathrm{Q}}$ $@ 1299.02 \mathrm{~nm}$	$\mathrm{CD}_{\text {max }, \mathrm{Q}}$ @1301.09 nm	$\mathrm{CD}_{\text {min }, \mathrm{Q}}$ $@ 1303.54 \mathrm{~nm}$	$\mathrm{CD}_{\text {max }, \mathrm{Q}}$ $@ 1305.63 \mathrm{~nm}$	$\mathrm{CD}_{\text {min }, \mathrm{Q}}$ $@ 1308.09 \mathrm{~nm}$	$\mathrm{CD}_{\text {max }, \mathrm{Q}}$ $@ 1310.19 \mathrm{~nm}$
-19.40	-8.38	-15.49	-4.61	-11.61	-0.84	-7.75	2.91

Proposal

- Based on the conservative ZDW distribution of $N($ mean $=1312 \mathrm{~nm}$, sigma=3.5nm), we propose the following CD values (derived with $M=4$ and $Q=1 E-4$):

Transmitter compliance channel specifications

Dispersion								$\begin{gathered} \text { Max mean } \\ \text { DGD } \end{gathered}$
Lane0		Lane1		Lane2		Lane3		
Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	
-20.34	-7.49	-16.42	-3.73	-12.52	0.03	-8.64	3.78	0.8 ps

Thank you!

