ITU-T G.9806AM3 UPDATE

IEEE 802.3 WORKING GROUP INTERIM

GREATER THAN 50 GB/S BIDIRECTIONAL OPTICAL ACCESS PHYS

JANUARY 2023

HIROTAKA NAKAMURA, NTT, JAPAN JUN SHAN WEY, VERIZON, USA JOHN JOHNSON, BROADCOM, USA

TAKUYA KANAI, NTT, JAPAN DEREK NESSET, HUAWEI, GERMANY FABRICE BOURGART, ORANGE, FRANCE

Background

- 100G-BiDi adhoc group formed for G.9806Am3 is progressing discussion
 - Monthly meetings
 - Target to complete in time for consent in the next ITU-T SG15 plenary on April 2023
- This contribution shares starting points for specification alignment between ITU-T and IEEE
 - Scope
 - Baseline specifications
 - Time plan

G.9806Am3 scope

- 100Gbps up to 40km
 - Business user services
 - Backhauls for residential user services
 - Mobile services(MBH/MFH)
- Re-utilize existing specifications that are already well-supported by industry
 - 100G-lambda MSA
 - G.9806Am1/2
 - IEEE 802.3cp

Comparison of wavelength plans

Source	PMD	Wavelength Range (nm)	Operating Distance (km)	Optical Path Loss (dB)	Channel Insertion Loss (dB)	Power Budget (dB)	Min Dispersion (ps/nm)	Max Dispersion (ps/nm)
100G Lambda	400G-LR4-10	1264.5 to 1277.5 1284.5 to 1297.5 1304.5 to 1317.5 1324.5 to 1337.5	10		6.3	11	-59.4	33.4
100G Lambda	100G-ER1-30	1304.5 to 1317.5	30		15	19.4	-55.6	47.9
100G Lambda	100G-ER1-40	1308.09 to 1310.19	40		18	22.4	-60.3	37.5
G.9806 IEEE 802.3cp	10G (NRZ)	1260 – 1280 (US) 1320 – 1340 (DS)	IEEE: 20, 40km	G.9806: 0-15dB (Class S) 10-23dB (Class B-)				
G.9806Am1 G.9806Am2 IEEE 802.3cp	25G (NRZ) 50G (PAM4)	1281 – 1297 (US) 1306 – 1322 (DS)	IEEE: 20, 40km	G.9806: 0-15dB (Class S) 10-23dB (Class B-)				
G.9806Am3	100G (PAM4)	TBD. 1) 1314 ± 2, 1289 ± 2 or 2) 1309 ± 1, 1305 ± 1		G.9806: 0-15dB (Class S) 10-23dB (Class B-)				

Comparison of IEEE and ITU-T PMD Classes

Channel Insertion Loss (dB)

Table 160–8—50GBASE-BRx illustrative link power budgets

Parameter	50GBASE- BR10	50GBASE- BR20	50GBASE- BR40	Unit
Power budget (for maximum TDECQ)	10.1	18.7	21.7	dB
Operating distance	10	20	40	km
Channel insertion loss	6.3 ^a	15 ^b	18 ^a	dB
Maximum discrete reflectance	-26	-26	-26	dB
Allocation for penaltiese (for maximum TDECQ)	3.8	3.7	3.7	dB

^a The channel insertion loss is calculated using the maximum distance specified in Table 160-5 for 50GBASE-BR10 and 50GBASE-BR40 and fiber attenuation of 0.4 dB/km plus an allocation for connection and splice loss given in 160.10.2.1.

^b The channel insertion loss is calculated using the maximum distance specified in Table 160–5 for 50GBASE-BR20 and fiber attenuation of 0.5 dB/km plus an allocation for connection and splice loss given in 160.10.2.1.
^c Link penalties are used for link budget calculations. They are not requirements and are not meant to be tested.

Reference: IEEE Std 802.3cp-2021

100G BiDi PtP adhoc group reached some agreements

- ✓ Refocus the scope to consent the specifications for optical path loss Class S (0-15dB) in the April ITU-T SG15 Plenary, leaving Class B- (10-23dB) for further study
- ✓ Adopt single wavelength 100G for each transmission direction
- ✓ Agree on wavelength plan for Class S: $1304.6 \pm 1 / 1309.1 \pm 1$ nm
 - ✓ Minimize the CD penalty
 - ✓ Re-utilize LAN-WDM, 100G-lambda MSA

Open topics under discussion

- Impacts of fiber non-linearity (based on VPI simulations):
 - SPM in the fiber has a significant impact on the 40km 100G PAM4 link performance
 - High TDECQ values induced by high launch OMA. Especially raised cosine shaped signals from transmitter can have high TDECQ values (e.g. 16dB)
 - CD limits: Can a statistical CD value be used as each link typically consists of multiple independent fiber spans? Operators' inputs needed.
 - Impact from SBS needs to be studied
 - Evaluation of simulation results by using commercially available components is needed
- For Class B-, further study to compare the pros and cons between 1x100G vs 2x50G is needed
 - Size(form factor), power consumption, cost(components, implementation)
- Inputs from IEEE members will be appreciated

100G BiDi PtP adhoc group -time plan-

Seven conference calls are planned. All are held at 14:00- 16:00 CEST (Geneva Time)

Five calls have been held in 2022-2023

Upcoming calls:

6th 2023.2.9 (Thu.)

7th 2023.3.2 (Thu.)

	Oct.	Nov.	Dec.	Jan. 2023	Feb.	Mar.	Apr.	Мау
ITU-T Q2/15	ITU interim 25 th -27 th Oct.	ITU interim End of Nov.		▲ ITU interi Jan.	m ITU interim Feb.	ITU interim Mar.	ITU Plenary	
100G Bidi adhoc	2nd 10/13	▲ 3rd 11/22	▲ 4th 12/8	5th 1/12	6th 2/9	▲ 7th 3/2		
IEEE 802.3dk		Plenary 2 nd week in Nov.		Interim 1/16		Plenary 2 nd week in Mar.		Interim 2 nd week in May

Now

Summary

- ITU-T G.9806Am3 project are developing specifications based on technologies well-supported by industry
- Specification alignment between ITU-T and IEEE is essential for the ecosystem
- Time is of essence. G.9806Am3 targets to consent in the April 2023 SG15 Plenary. The adhoc group must conclude its work and reach consensus by March 9
- Requests to IEEE 802.3 participants
 - Prioritize working on the 100G objectives over 200G
 - Start discussion based on this joint contribution, e.g., wavelength plan, optical path loss
 - January Interim: Discussion and Straw polls
 - March Plenary: Motions
 - IEEE 802.3 participants are encouraged to join the ITU-T 100G BiDi PtP adhoc group.

Contact to its co-chairs;

Dr. Hirotaka Nakamura <u>hirotaka.nakamura.by@hco.ntt.co.jp</u>

Dr. Derek Nesset <u>derek.nesset@huawei.com</u>

Straw Poll

- I support the specification of 100G PAM4 modulation format using wavelengths 1304.6 ± 1nm and 1309.1 ± 1nm for the 100G BiDi 10km and 20km PMD objectives.
 - Yes:
 - No:
 - Need more information:

THANK YOU

0